DOI QR코드

DOI QR Code

Preparation and Characterization of Polyurethane/Organoclay Nanocomposites by UV Curing

UV경화에 의한 폴리우레탄/유기화클레이 나노복합재료 제조와 물성 연구

  • Received : 2012.08.30
  • Accepted : 2012.11.22
  • Published : 2012.12.31

Abstract

Polyurethane (PU)/organoclay nanocomposites were prepared by mixing UV curable urethane acrylate oligomer with organoclay, and a subsequent curing by UV irradiation. As organoclays, commercially available Cloisite 20A (C20A) and acrylsilane modified C20A were used. XRD and TEM analyses revealed that the UV cured PU/clay nanocomposites formed intercalated nanocomposites, and acrylsilane modified C20A are dispersed more finely than unmodified C20A in PU matrix. DMTA, pencil hardness and adhesion test onto PET substrate showed that the clay nanolayers induced an increase in the properties, and the enhancement in the properties was more pronounced in the PU/acrylsilane modified C20A nanocomposites than in the PU/unmodified C20A nanocomposites. It was also observed that the PU/surface modified clay nanocomposites showed remarkably lower shrinkage upon UV curing than the unfilled PU. The nanocomposites showed excellent optical transparency but lower gloss as compared to unfilled PU.

UV 경화형 우레탄아크릴레이트 수지와 유기화클레이를 혼합한 후 UV를 조사하여 경화시킴으로써 폴리우레탄-클레이 나노복합체를 제조하였다. 유기화클레이로서는 Closite20A (C20A) 및 이를 실란처리하여 표면에 아크릴기를 도입한 아크릴변성 C20A를 사용하였다. XRD와 TEM 분석으로부터 제조된 나노복합체는 삽입형 나노복합체이며, 아크릴 변성시킨 C20A가 변성시키지 않은 C20A에 비해 더 잘 분산되는 것을 알 수 있었다. DMTA, 연필경도분석, PET 필름에의 부착성 시험으로부터 클레이 첨가에 의해 유리전이온도와 저장탄성률 및 연필경도가 증가하고 PET 필름에의 부착성이 향상되며, 이러한 물리적 특성의 증가는 아크릴 변성시킨 C20A를 함유한 나노복합체에서 더 크게 발현됨을 알 수 있었다. 또한, 클레이 첨가에 의해 UV경화 시 수반되는 수축을 저하시킬 수 있음을 알았다. 한편, 제조된 나노복합체는 우수한 광투과도를 나타내었으나, 광택도는 나노입자를 함유하지 않은 경우에 비해 다소 저하되었다.

Keywords

Acknowledgement

Supported by : 지식경제부, 과학기술부

References

  1. J. P. Fouassier and J. F. Rabek, Radiation curing in polymer science and technology, vols. I-IV, Elsevier, London (1993).
  2. H. Nagata, M. Shiroishi, Y. Miyama, N. Mitsugi, and N. Miyamoto, Opt. Fib. Techol., 1, 283 (1995). https://doi.org/10.1006/ofte.1995.1020
  3. K. K. Baikerikar and A. B. Scranton, Polymer, 42, 431 (2001). https://doi.org/10.1016/S0032-3861(00)00388-8
  4. L. Fogelstrom, P. Antoni, E. Malmstrom, and A. Hult, Prog. Org. Coat., 55, 284 (2006). https://doi.org/10.1016/j.porgcoat.2005.12.003
  5. T. N. Tey, A. M. Soutar, S. G. Mhaisalkar, H. Yu, and K. M. Hew, Thin Solid Films, 504, 384 (2006). https://doi.org/10.1016/j.tsf.2005.09.104
  6. P. Barbeau, J. F. Gerard, B. Magny, J. P. Pascault, and G. Vigier, J. Polym. Sci. B: Polym. Phys., 37, 919 (1999). https://doi.org/10.1002/(SICI)1099-0488(19990501)37:9<919::AID-POLB5>3.0.CO;2-X
  7. M. Sangermano, G. Malucelli, E. Amerio, A. Priola, A. Billi, and G. Rizza, Prog. Org. Coat., 54, 134 (2005). https://doi.org/10.1016/j.porgcoat.2005.05.004
  8. P. C. L. Baron, Z. Wang, and T. J. Pinnavaia, Appl. Clay Sci, 15, 11 (1999).
  9. M. Alexander and P. Dubois, Mater. Sci. Eng., R-28, 1 (2000).
  10. A. R. Vaia and E. P. Gianellis, Mater. Res. Sci. Bull. 26, 394 (2001). https://doi.org/10.1557/mrs2001.93
  11. S. J. Ahmadi, Y. D. Huang, and W. Li, J. Mater. Sci., 39, 1919 (2004). https://doi.org/10.1023/B:JMSC.0000017753.90222.96
  12. F. M. Uhl, S. P. Davuluri, S. C. Wong, and D. C. Webster, Chem. Mater., 16, 1135 (2004). https://doi.org/10.1021/cm035137d
  13. F. M. Uhl, S. P. Davuluri, S. C. Wong, and D. C. Webster, Polymer, 45, 6175 (2004). https://doi.org/10.1016/j.polymer.2004.07.001
  14. F. M. Uhl, D. C. Webster, S. P. Davuluri, and S. C. Wong, Eur. Polym. J., 42, 2596 (2006). https://doi.org/10.1016/j.eurpolymj.2006.06.016
  15. L. Keller, C. Decker, K. Zahouily, S. Benfarhi, J. M. Le Meins, and J. M. Brendle, Polymer, 45, 7437 (2004). https://doi.org/10.1016/j.polymer.2004.08.040
  16. S. Benfarhi, C. Decker, L. Keller, and K. Zahouily, Eur. Polym. J., 40, 493 (2004). https://doi.org/10.1016/j.eurpolymj.2003.11.009
  17. C. Decker, L. Keller, K. Zahouily, and S. Benfarhi, Polymer, 46, 6640 (2005). https://doi.org/10.1016/j.polymer.2005.05.018
  18. Y. Y. Wang and T. E. Hsieh, Chem. Mater., 17, 3331 (2005). https://doi.org/10.1021/cm0487268
  19. Y. Y. Wang and T. E. Hsieh, J. Mater. Sci., 42, 4451 (2007). https://doi.org/10.1007/s10853-006-0623-5
  20. M. Sangermano, N. Lak, G. Malucelli, A. Samakande, and R. D. Sanderson, Prog. Org. Coat., 61, 89 (2008). https://doi.org/10.1016/j.porgcoat.2007.09.009
  21. K. O. Adom, J. Schall, and C. A. Guymon, Macromolecules, 42, 3275 (2009). https://doi.org/10.1021/ma802656x
  22. B. S. Shemper, J. F. Morizur, M. Alirol, A. Domenech, V. Hulin, and L. J. Mathias, J. Appl. Polym. Sci., 93, 1252 (2004). https://doi.org/10.1002/app.20580

Cited by

  1. Evaluation of Fiber Arrangement Condition of CF/PP Composites Using Electrical Resistance Measurement and Wettability vol.17, pp.1, 2016, https://doi.org/10.17702/jai.2016.17.1.15