DOI QR코드

DOI QR Code

카르복시산을 포함하는 Grafted EPDM의 접착특성에 관한 연구

Studies on Adhesion Properties of Grafted EPDM Containing Carboxylic Acid Group

  • Kim, Dongho (Korea Institute of Footwear & Leather Technology) ;
  • Yoon, Yoomi (Korea Institute of Footwear & Leather Technology) ;
  • Chung, Ildoo (Advanced Nano Materials Lab, Department of Polymer Science & Engineering, Pusan National University) ;
  • Park, Chanyoung (Department of Polymer Engineering, Pukyong National University) ;
  • Bae, Jongwoo (Korea Institute of Footwear & Leather Technology) ;
  • Oh, Sangtaek (Korea Institute of Footwear & Leather Technology) ;
  • Kim, Guni (Korea Institute of Footwear & Leather Technology)
  • 투고 : 2011.11.24
  • 심사 : 2012.01.19
  • 발행 : 2012.01.31

초록

EPDM에 카르복시산을 포함하는 아크릴 단량체인 methacrylic acid (MA)가 도입된 grafted EPDM을 합성하여 MA의 grafting ratio가 탄성체의 물성과 다른 고무와의 접착특성에 미치는 영향을 연구하였다. Grafted EPDM의 storage modulus는 특정온도까지는 sulfur로 가교한 EPDM vulcanizate보다 높게 유지되다가 온도가 더 높아지면 2차 결합력이 약해지면서 급격하게 감소되는 것이 관찰되었다. EPDM에 수소결합을 유도할 수 있는 반응기를 도입했을 때 grafted EPDM 분자들 간의 aggregate 형성과 그라프트된 MA의 결정성으로 인해 우수한 기계적 물성을 나타내었다. EPDM 자체는 극성이 낮고 다른 종류의 고무와 분자간 결합력이 약해서 접착이 제대로 이루어지지 않았으며 그라프트된 MA의 함량이 증가할수록 접착강도가 더 높아졌으며 MA의 grafting ratio가 10% 이상일 때에는 접착평가 시 고무시편이 부분적으로 파괴될 정도로 접착력이 우수하였다.

The effect of the grafting ratio on the mechanical property and adhesion property of the grafted EPDM modified with methacrylic acid (MA) was investigated. The storage modulus of MA-grafted EPDM was maintained higher than that of cross-linked EPDM vulcanizate by sulfur, but it was observed that the storage modulus was decreased at elevated temperature because of the weakened secondary bonding. When the functional group for hydrogen bonding was introduced in EPDM, it had excellent mechanical properties by the aggregate between grafted EPDM molecules and crystallinity of MA. The bonding strength between EPDM and other rubbers was very low because EPDM has nonpolar property and low molecular interaction to others. The bonding strength was increased as increasing grafting ratio and it was excellent enough to break the rubber during the peel test when the grafting ratio was more than 10%.

키워드

과제정보

연구 과제 주관 기관 : 지식경제부

참고문헌

  1. 이경남, 대한민국특허 10-0407859 (2003).
  2. 김재성, 대한민국특허 10-1023757 (2011).
  3. 손정호, 대한민국특허 10-0303887 (2001).
  4. 이병조, 대한민국특허 10-0431128 (2004).
  5. M. Bengt and S. Bengt, J. Appl. Polym. Sci., 50, 1247 (1993). https://doi.org/10.1002/app.1993.070500716
  6. M. A. J. van der Mee, J. G. P. Goossens, and M. van Duin, Rubber Chem. Technol., 81, 96 (2008). https://doi.org/10.5254/1.3548200
  7. M. A. J. van der Mee, R. M. A. I'Abee, G. Portale, J. G. P. Goossens, and M. van Duin, Macromolecules, 41, 5493 (2008). https://doi.org/10.1021/ma8007509
  8. C. X. Sun, M. A. J. van der Mee, J. G. P. Goossens, and M. van Duin, Macromolecules, 39, 3441 (2006). https://doi.org/10.1021/ma052691v
  9. G. Holden, N. R. Legge, and R. P. Quirk, Thermoplastic Elastomers: A Comprehensive Review, Eds., Hanser, Munich (1987).
  10. G. Holden, Understanding Thermoplastic Elastomers, Ed., Hasnser, Munich (2000).
  11. S. K. De and A. K. Bhowmick, Thermoplastic Elastomers from Rubber-Plastic Blends, Eds., Ellis Horwood, New York (1990).
  12. K. Chino and M. Ashiura, Macromolecules, 34, 9201 (2001). https://doi.org/10.1021/ma011253v
  13. Y. W. Chang, J. K. Mishra, S. K. Kim, and D. K. Kim, Mater. Lett., 60, 3118 (2006). https://doi.org/10.1016/j.matlet.2006.02.055
  14. T. Kurian, A. K. Bhattacharya, P. P. De, D. K. Tripathy, and S. K. De, Plastics, Rubber and Composites and Applications, 24, 285 (1995).
  15. A. Eisenberg, Ions in Polymers, Ed.; American Chemical Society: Washington, DC (1980).
  16. K. Chino, Jap. Rubber Soc., 78, 106 (2005). https://doi.org/10.2324/gomu.78.106
  17. K. Chino, M. Ashiura, and J. Natori, Rubber Chem. Technol., 75, 713 (2002). https://doi.org/10.5254/1.3544997
  18. P. Antony and S. K. De, Polymer, 40, 1487 (1999). https://doi.org/10.1016/S0032-3861(98)00362-0
  19. M. A. J. van der Mee, J. G. P. Goossens, and M. van Duin, Polymer, 49, 1239 (2008). https://doi.org/10.1016/j.polymer.2008.01.031
  20. A. Eisenberg and J. S. Kim, Introduction to Ionomers, Eds.; John Wiley & Sons: New York (1998).
  21. S. Schlick, Ionomers; Characterizations, Theory and Application, Ed.; CRC Press: Boca Raton, FL (1996).
  22. O. Colombani, C. Barioz, L. Bouteiller, C. Chaneac, L. Fomperie, F. Lortie, and H. Montes, Macromolecules, 38, 1752 (2005). https://doi.org/10.1021/ma048006m
  23. C. C. Peng and V. Abetz, Macromolecules, 38, 5575 (2005). https://doi.org/10.1021/ma050419f

피인용 문헌

  1. Graft Copolymerization of Acrylic Monomer Containing Aromatic Carboxylic Acid Group onto EPDM and Their Mechanical Properties vol.47, pp.3, 2012, https://doi.org/10.7473/EC.2012.47.3.216
  2. Preparation and Characterization of UV Cured Optical Films Containing a Fluorene Compound vol.622, pp.1, 2015, https://doi.org/10.1080/15421406.2015.1096491
  3. Preparation and Properties of UV Curable Urethane Acrylates for Ink Binder vol.14, pp.4, 2013, https://doi.org/10.17702/jai.2013.14.4.167
  4. Mechanical and dismantlement adhesion properties of grafted EPDM-silica hybrid vol.28, pp.21, 2014, https://doi.org/10.1080/01694243.2014.950032
  5. Preparation and properties of UV-curable polyurethane-acrylate coatings of pre-coated metal (PCM): effect of polyol type/contents on adhesive property vol.706, pp.1, 2020, https://doi.org/10.1080/15421406.2020.1743439