DOI QR코드

DOI QR Code

Dielectrophoretic Alignment and Pearl Chain Formation of Single-Walled Carbon Nanotubes in Deuterium Oxide Solution

  • Lee, Dong Su (Institute of Advanced Composite Materials, Korea Institute of Science and Technology) ;
  • Park, Yung Woo (Department of Physics and Astronomy, Seoul National University)
  • Received : 2012.08.01
  • Accepted : 2012.09.25
  • Published : 2012.10.31

Abstract

Dielectrophoretic filtering and alignment of single-walled carbon nanotubes (SWCNTs) were tested using deuterium oxide as a solvent. A solution of deuterium oxide-SWCNTs was dropped on top of a silicon chip and an ac electric field was applied between pre-defined electrodes. Deuterium oxide was found to be a better solvent than hydrogen oxide for the dielectrophoresis process with higher efficiency of filtering. This was demonstrated by comparing Raman spectra measured on the initial solution with those measured on the filtered solution. We found that the aligned nanotubes along the electric field were not deposited on the substrate but suspended in solution, forming chain-like structures along the field lines. This so-called pearl chain formation of CNTs was verified by electrical measurements through the aligned tubes. The solution was frozen in liquid nitrogen prior to the electrical measurements to maintain the chain formation. The current-voltage characteristics for the sample demonstrate the existence of conduction channels in the solution, which are associated with the SWCNT chain structures.

Keywords

Acknowledgement

Supported by : Korea Institute of Science and Technology (KIST)

References

  1. Iijima S. Helical microtubules of graphitic carbon. Nature, 354, 59 (1991). http://dx.doi.org/doi:10.1038/354056a0.
  2. Dekker C. Carbon nanotubes as molecular quantum wires. Physics Today, 52, 22 (1999). http://dx.doi.org/10.1063/1.882658.
  3. Dresselhaus MS, Dresselhaus G, Avouris P. Carbon nanotubes: synthesis, structural properties and applications, Springer, New York (2001).
  4. Tans SJ, Verschueren ARM, Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature, 393, 49 (1998). http://dx.doi.org/10.1038/29954.
  5. Derycke V, Martel R, Appenzeller J, Avouris P. Controlling doping and carrier injection in carbon nanotube transistors. Appl Phys Lett, 80, 2773 (2002). http://dx.doi.org/10.1063/1.1467702.
  6. Nygard J, Cobden DH, Bockrath M, McEuen PL, Lindelof PE. Electrical transport measurements on single-walled carbon nanotubes. Appl Phys A: Mater Sci Process, 69, 297 (1999). http:// dx.doi.org/10.1007/s003390051004.
  7. Yao Z, Kane CL, Dekker C. High-field electrical transport in single- wall carbon nanotubes. Phys Rev Lett, 84, 2941 (2000). http:// dx.doi.org/10.1103/PhysRevLett.84.2941.
  8. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438, 197 (2005). http://dx.doi.org/10.1038/nature04233.
  9. Zhang YB, Tan YW, Stormer HL, Kim P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 438, 201 (2005). http://dx.doi.org/10.1038/nature04235.
  10. Yang H, Heo J, Park S, Song HJ, Seo DH, Byun KE, Kim P, Yoo I, Chung HJ, Kim K. Graphene barristor, a triode device with a gate-controlled schottky barrier. Science, 336, 1140 (2012). http:// dx.doi.org/10.1126/science.1220527.
  11. Avouris P, Chen ZH, Perebeinos V. Carbon-based electronics. Nat Nanotechnol, 2, 605 (2007). http://dx.doi.org/10.1038/nnano. 2007.300.
  12. Tans SJ, Devoret MH, Dai HJ, Thess A, Smalley RE, Geerligs LJ, Dekker C. Individual single-wall carbon nanotubes as quantum wires. Nature, 386, 474 (1997). http://dx.doi. org/10.1038/386474a0.
  13. Lin YM, Appenzeller J, Avouris P. Ambipolar-to-unipolar conversion of carbon nanotube transistors by gate structure engineering. Nano Lett, 4, 947 (2004). http://dx.doi.org/10.1021/nl049745j.
  14. Lee DS, Svensson J, Lee SW, Park YW, Campbell EEB. Fabrication of crossed junctions of semiconducting and metallic carbon nanotubes: a CNT-gated CNT-FET. J Nanosci Nanotechnol, 6, 1325 (2006). http://dx.doi.org/10.1166/jnn.2006.321.
  15. Svensson J, Tarakanov Y, Lee DS, Kinaret JM, Park YW, Campbell EEB. A carbon nanotube gated carbon nanotube transistor with 5 ps gate delay. Nanotechnology, 19, (2008). http://dx.doi. org/10.1088/0957-4484/19/32/325201.
  16. Haddon RC, Sippel J, Rinzler AG, Papadimitrakopoulos F. Purification and separation of carbon nanotubes. MRS Bull, 29, 252 (2004). http://dx.doi.org/10.1557/mrs2004.76.
  17. Lee DS, Kim DW, Kim HS, Lee SW, Jhang SH, Park YW, Campbell EEB. Extraction of semiconducting CNTs by repeated dielectrophoretic filtering. Appl Phys A: Mater Sci Process, 80, 5 (2005). http://dx.doi.org/10.1007/s00339-004-2992-4.
  18. Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, Lustig SR, Richardson RE, Tassi NG. DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater, 2, 338 (2003). http://dx.doi. org/10.1038/nmat877.
  19. Yang CM, Park JS, An KH, Lim SC, Seo K, Kim B, Park KA, Han S, Park CY, Lee YH. Selective removal of metallic singlewalled carbon nanotubes with small diameters by using nitric and sulfuric acids. J Phys Chem B, 109, 19242 (2005). http://dx.doi. org/10.1021/jp053245c.
  20. Liu HP, Nishide D, Tanaka T, Kataura H. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat Commun, 2, (2011). http://dx.doi.org/10.1038/ ncomms1313.
  21. Bezryadin A, Dekker C, Schmid G. Electrostatic trapping of single conducting nanoparticles between nanoelectrodes. Appl Phys Lett, 71, 1273 (1997). http://dx.doi.org/10.1063/1.119871.
  22. Amlani I, Rawlett AM, Nagahara LA, Tsui RK. An approach to transport measurements of electronic molecules. Appl Phys Lett, 80, 2761 (2002). http://dx.doi.org/10.1063/1.1469655.
  23. Pohl HA. Dielectrophoresis: the behavior of neutral matter in nonuniform electric fields, Cambridge University Press, Cambridge (1978).
  24. Hermanson KD, Lumsdon SO, Williams JP, Kaler EW, Velev OD. Dielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions. Science, 294, 1082 (2001). http:// dx.doi.org/10.1126/science.1063821.
  25. Bronikowski MJ, Willis PA, Colbert DT, Smith KA, Smalley RE. Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: a parametric study. J Vac Sci Technol A, 19, 1800 (2001). http://dx.doi.org/10.1116/1.1380721.
  26. O'Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma JP, Hauge RH, Weisman RB, Smalley RE. Band gap fluorescence from individual single-walled carbon nanotubes. Science, 297, 593 (2002). http://dx.doi.org/10.1126/science.1072631.
  27. Krupke R, Hennrich F, von Lohneysen H, Kappes MM. Separation of metallic from semiconducting single-walled carbon nanotubes. Science, 301, 344 (2003). http://dx.doi.org/10.1126/sci ence.1086534.
  28. Krupke R, Hennrich F, Kappes MM, Lohneysen HV. Surface conductance induced dielectrophoresis of semiconducting singlewalled carbon nanotubes. Nano Lett, 4, 1395 (2004). http://dx.doi. org/10.1021/nl0493794.
  29. Benedict LX, Louie SG, Cohen ML. Static polarizabilities of single- wall carbon nanotubes. Phys Rev B, 52, 8541 (1995). http:// dx.doi.org/10.1103/PhysRevB.52.8541.
  30. Ding JW, Yan XH, Cao JX. Analytical relation of band gaps to both chirality and diameter of single-wall carbon nanotubes. Phys Rev B, 66, (2002). http://dx.doi.org/10.1103/PhysRevB.66.073401.
  31. Kataura H, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y. Optical properties of single-wall carbon nanotubes. Synth Met, 103, 2555 (1999). http://dx.doi.org/10.1016/s0379- 6779(98)00278-1.
  32. Yu ZH, Brus LE. (n, m) structural assignments and chirality dependence in single-wall carbon nanotube Raman scattering. J Phys Chem B, 105, 6831 (2001). http://dx.doi.org/10.1021/jp010853t.
  33. Dresselhaus MS, Dresselhaus G, Jorio A, Souza AG, Saito R. Raman spectroscopy on isolated single wall carbon nanotubes. Carbon, 40, 2043 (2002). http://dx.doi.org/10.1016/s0008-6223 (02)00066-0.

Cited by

  1. Selective Oxidation of Amorphous Carbon Layers without Damaging Embedded Single Wall Carbon Nanotube Bundles vol.52, pp.11R, 2013, https://doi.org/10.7567/JJAP.52.115101