DOI QR코드

DOI QR Code

OSCILLATORY BEHAVIOR AND COMPARISON FOR HIGHER ORDER NONLINEAR DYNAMIC EQUATIONS ON TIME SCALES

  • Sun, Taixiang (College of Mathematics and Information Science, Guangxi University) ;
  • Yu, Weiyong (College of Mathematics and Information Science, Guangxi University) ;
  • Xi, Hongjian (Department of Mathematics, Guangxi College of Finance and Economics)
  • Received : 2011.03.14
  • Accepted : 2011.07.06
  • Published : 2012.01.30

Abstract

In this paper, we study asymptotic behaviour of solutions of the following higher order nonlinear dynamic equations $$S_n^{\Delta}(t,x)+{\delta}p(t)f(x(g(t)))=0$$ and $$S_n^{\Delta}(t,x)+{\delta}p(t)f(x(h(t)))=0$$ on an arbitrary time scale $\mathbb{T}$ with sup $\mathbb{T}={\infty}$, where n is a positive integer, ${\delta}=1$ or -1 and $$S_k(t,x)=\{\array x(t),\;if\;k=0,\\a_k(t)S_{{\kappa}-1}^{\Delta}(t),\;if\;1{\leq}k{\leq}n-1,\\a_n(t)[S_{{\kappa}-1}^{\Delta}(t)]^{\alpha},\;if\;k=n,$$ with ${\alpha}$ being a quotient of two odd positive integers and every $a_k$ ($1{\leq}k{\leq}n$) being positive rd-continuous function. We obtain some sufficient conditions for the equivalence of the oscillation of the above equations.

Keywords

References

  1. R. P. Agarwal, M. Bohner and S. H. Saker, Oscillation of second order delay dynamic equations, The Canadian Applied Mathematics Quarterly 13(2005), 1-17.
  2. E. Akin-Bohner, M. Bohner, S. Djebali and T. Moussaoui, On the asymptotic integration of nonlinear dynamic equations, Advances in Difference Equations, Article ID739602, 2008, 17 pages.
  3. M. Bohner, B. Karpuz and O. Ocalan, Iterated oscillation criteria for delay dynamic equations of first order, Advances in Difference Equations, Article ID 458687, 2008, 12 pages.
  4. M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhauser, Boston, 2001.
  5. M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhauser, Boston, 2003.
  6. M. Bohner and S. H. Saker, Oscillation of second order nonlinear dynamic equations on time scales, The Rocky Mountain Journal of Mathematics 34(2004), 1239-1254. https://doi.org/10.1216/rmjm/1181069797
  7. L. Erbe, Oscillation results for second-order linear equations on a time scale, Journal of Difference Equations and Applications 8(2002), 1061-1071. https://doi.org/10.1080/10236190290015317
  8. L. Erbe, Q. Kong and B. Zhang, Oscillation Theory for Functional Differential Equations, Marcel Dekker, New York, 1995.
  9. L. Erbe, A. Peterson and P. Rehak, Comparison theorems for linear dynamic equations on time scales, Journal of Mathematical Analysis and Applications 275(2002), 418-438. https://doi.org/10.1016/S0022-247X(02)00390-6
  10. L.Erbe, A. Peterson and S. H. Saker, Asymptotic behavior of solutions of a third-order nonlinear dynamic equation on time scales, Journal of Computational and Applied Mathematics 181(2005), 92-102.
  11. L. Erbe, A. Peterson and S. H. Saker, Oscillation and asymptotic behavior a third-order nonlinear dynamic equation, The Canadian Applied Mathematics Quarterly 14(2006), 129-147.
  12. L. Erbe, A. Peterson and S. H. Saker, Hille and Nehari type criteria for third order dynamic equations, Journal of Mathematical Analysis and Applications 329(2007), 112-131. https://doi.org/10.1016/j.jmaa.2006.06.033
  13. L. Erbe, A. Peterson and S. H. Saker, Oscillation criteria for second-order nonlinear delay dynamic equations, Journal of Mathematical Analysis and Applications 333(2007), 505-522. https://doi.org/10.1016/j.jmaa.2006.10.055
  14. S. Grace, R. P. Agarwal, B. Kaymakcalan and W. Sae-jie, On the oscillation of certain second order nonlinear dynamic equations, Mathematical and Computer Modelling 50(2009), 273-286. https://doi.org/10.1016/j.mcm.2008.12.007
  15. S. Grace, R. Agarwal and S. Pinelas, Comparison and oscillatory behavior for certain second order nonlinear dynamic equations, Journal of Applied Mathematics and Computing, DOI 10.1007/s12190-009-0376-9.
  16. Z. Han, B. Shi and S. Sun, Oscillation criteria for second-order delay dynamic equations on time scales, Advances in Difference Equations, Article ID70730, 2007, 16 pages.
  17. Z. Han, S. Sun, and B. Shi, Oscillation criteria for a class of second-order Emden-Fowler delay dynamic equations on time scales, Journal of Mathematical Analysis and Applications 334(2007), 847-858. https://doi.org/10.1016/j.jmaa.2007.01.004
  18. T. S. Hassan, Oscillation criteria for half-linear dynamic equations on time scales, Journal of Mathematical Analysis and Applications 345(2008), 176-185. https://doi.org/10.1016/j.jmaa.2008.04.019
  19. T. S. Hassan, Oscillation of third order nonlinear delay dynamic equations on time scales, Mathematical and Computer Modelling 49(2009), 1573-1586. https://doi.org/10.1016/j.mcm.2008.12.011
  20. R. Higgins, Oscillation theory of dynamic equations on time scales, Ph D Thesis, University Nebraska, 2008.
  21. S. Hilger, Analysis on measure chains i a unified approach to continuous and discrete calculus, Results in Mathematics 18 (1990), 18-56. https://doi.org/10.1007/BF03323153
  22. V. Kac and P. Chueng, Quantum Calculus, Universitext, 2002.
  23. Y. Sahiner, Oscillation of second-order delay differential equations on time scales, Nonlinear Analysis: Theory, Methods and Applications 63(2005), e1073-e1080. https://doi.org/10.1016/j.na.2005.01.062
  24. T. Sun, H. Xi and W. Yu, Asymptotic behaviors of higher order nonlinear dynamic equations on time scales, Journal of Applied Mathematics and Computing, DOI:10.1007/s12190-010-0428-1.
  25. B. Zhang and S. Zhu, Oscillation of Second-Order Nonlinear delay Dynamic Equations on Time Scales, Computers and Mathematics with Applications 49(2005), 599-609. https://doi.org/10.1016/j.camwa.2004.04.038