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OSCILLATORY BEHAVIOR AND COMPARISON FOR

HIGHER ORDER NONLINEAR DYNAMIC EQUATIONS ON

TIME SCALES†

TAIXIANG SUN∗, WEIYONG YU AND HONGJIAN XI

Abstract. In this paper, we study asymptotic behaviour of solutions of
the following higher order nonlinear dynamic equations

S4
n (t, x) + δp(t)f(x(g(t))) = 0

and
S4
n (t, x) + δp(t)f(x(h(t))) = 0

on an arbitrary time scale T with supT = ∞, where n is a positive integer,
δ = 1 or −1 and

Sk(t, x) =





x(t), if k = 0,

ak(t)S
4
k−1(t), if 1 ≤ k ≤ n− 1,

an(t)[S
4
n−1(t)]

α, if k = n,

with α being a quotient of two odd positive integers and every ak (1 ≤
k ≤ n) being positive rd-continuous function. We obtain some sufficient
conditions for the equivalence of the oscillation of the above equations.

AMS Mathematics Subject Classification : 34K11, 39A10, 39A99.
Key words and phrases : Oscillation, dynamic equation, time scale.

1. Introduction

A time scale T is an arbitrary nonempty closed subset of the real numbers.
Thus, R,Z,N, that is, the real numbers, the integers and the natural numbers are
examples of time scales. The theory of time scales, which has recently received a
lot of attention, was introduced by Hilger in [21] in order to unify continuous and
discrete analysis. Not only can this theory of so-called “dynamic equations” unify
the theories of differential equations and of difference equations, but also it is able
to extend these classical cases to cases “in between”, for example, to so-called
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q-difference equations when T = {1, q, q2, ...}, which has important applications
in quantum theory (see [22]). Many other interesting time scales exist, and they
give rise to plenty of applications, among them the study of population dynamic
models (see [4]). A book on the subject of time scale by Bohner and Peterson
[4] summarizes and organizes much of the time scale calculus (see also [5]). For
the notions used below, we refer to [4].

In the last years, there has been much research activity concerning the oscil-
lation and nonoscillation of solutions of some dynamic equations on time scales,
and we refer the reader to the paper [1-3, 6-7, 10-14, 16-21, 23-24].

Erbe et al. in [9] obtained comparison theorems for the second order linear
equations

(p(t)x4(t))4 + q(t)xσ(t) = 0,

(p(t)y4(t))4 + aσ(t)q(t)yσ(t) = 0

and

(p(t)z4(t))4 + a(t)q(t)zσ(t) = 0.

Zhang and Zhu in [25] established the equivalence of the oscillation of the non-
linear dynamic equations

x44(t) + p(t)f(x(t− τ)) = 0

and

x44(t) + p(t)f(xσ(t)) = 0.

Higgins in [20] further studied the equivalence of the oscillation of the non-
linear dynamic equations

(a(t)x4(t))4 + p(t)f(x(σ(t))) = 0

and

(a(t)x4(t))4 + p(t)f(x(τ(t))) = 0.

Grace et al. in [15] obtained the new conditions of oscillation for the second
order nonlinear dynamic equation

(a(t)(x4(t))α)4 + p(t)xβ(t) = 0

and obtained the comparison results for

(a(t)(x4(t))α)4 + p(t)xβ(t) ≥ 0 (≤ 0).

Motivated by the above studies, in this paper, we shall consider the higher
order nonlinear dynamic equations

S4
n (t, x) + δp(t)f(x(g(t))) = 0 (1.1)

and

S4
n (t, x) + δp(t)f(x(h(t))) = 0, (1.2)
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on an arbitrary time scale T with supT = ∞, where δ = 1 or −1, n is a positive
integer,

Sk(t, x) =





x(t), if k = 0,

ak(t)S
4
k−1(t, x), if 1 ≤ k ≤ n− 1,

an(t)[S
4
n−1(t, x)]

α, if k = n,

with α being a quotient of two odd positive integers, and ak (1 ≤ k ≤ n),
p, g, h, f satisfying the following conditions:

(1) p, ak ∈ Crd(T, (0,∞)) (1 ≤ k ≤ n).
(2) g, h ∈ Crd(T,T) and limt−→∞ g(t) = limt−→∞ h(t) = ∞.
(3) f : R → R is continuous, nondecreasing, f(−u) = −f(u) for u ∈ R, and

uf(u) > 0 for u 6= 0.
Since we are interested in the asymptotic and oscillatory behavior of solu-

tions near infinity, we assume that supT = ∞, and define the time scale interval
[t0,∞)T = {t ∈ T : t ≥ t0}, where t0 ∈ T. By a solution of (1.1) (resp.
S4
n (t, x) + δp(t)f(x(g(t))) ≤ 0 or S4

n (t, x) + δp(t)f(x(g(t))) ≥ 0) we mean a
nontrivial real valued function x ∈ Crd([Tx,∞)T,R) with Tx ≥ t0, which has
the property that Si(t, x) ∈ C1

rd([Tx,∞)T,R) for every 0 ≤ i ≤ n and satisfies
(1.1) (resp. S4

n (t, x) + δp(t)f(x(g(t))) ≤ 0 or S4
n (t, x) + δp(t)f(x(g(t))) ≥ 0)

on [Tx,∞)T, where C1
rd denote the space of functions that are differentiable

and whose derivative are rd-continuous. The solutions vanishing in some neigh-
borhood of infinity will be excluded from our consideration. A solution x of
(1.1) (resp. S4

n (t, x) + δp(t)f(x(g(t))) ≤ 0 or S4
n (t, x) + δp(t)f(x(g(t))) ≥ 0) on

[Tx,∞)T) is said to be oscillatory if it is neither eventually positive nor eventually
negative, otherwise it is called nonoscillatory.

2. Main results

For convenience, we write

αk =

{
α, if k = n,
1, if 1 ≤ k ≤ n− 1.

We call the condition (C) holds if there is a constant M > 0 and a sufficiently
large T ∈ T such that for any t ≥ T ,

(1) h(t) ≤ g(t).

(2)
∫ g(t)

h(t)
1

a1(u1)

∫ u1

T
1

a2(u2)
...
∫ ui−1

T

[
1

ai(ui)

] 1
αi ∆ui...∆u1 ≤ M

∫ g(t)

T
1

a1(u1)∫ u1

T
1

a2(u2)
...
∫ ui−2

T
1

ai−1(ui−1)
∆ui−1...∆u1 for 2 ≤ i ≤ n.

(3)
∫ g(t)

h(t)

[
1

a1(s)

] 1
α1 4s ≤ M .

Lemma 2.1. Assume that∫ ∞

t0

[ 1

ak(s)

] 1
αk 4s = ∞ for all 1 ≤ k ≤ n (2.1)

and m ∈ [1, n]. Then
(1) lim inft−→∞ Sm(t, x) > 0 implies limt−→∞ Sk(t, x) = ∞ for k ∈ [0,m−1].
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(2) lim supt−→∞ Sm(t, x) < 0 implies limt−→∞ Sk(t, x) = −∞ for k ∈ [0,m−
1].

Proof. If lim inft−→∞ Sm(t, x) > 0, then there exist a sufficiently large T ≥ t0
and a constant c > 0 such that Sm(t, x) ≥ c > 0 for t ≥ T and

Sm−1(t, x) = Sm−1(T, x) +

∫ t

T

[Sm(s, x)

am(s)

] 1
αm 4s ≥ Sm−1(T, x) +

∫ t

T

[ c

am(s)

] 1
αm 4s.

Thus limt−→∞ Sm−1(t, x) = ∞. The rest of the proof is by induction. The case
(2) can be treated similarly. The proof is completed. ¤

Lemma 2.2. Assume that (2.1) holds. If S4
n (t, x) < 0 and x(t) > 0 for t ≥ t0,

then there exists an integer m ∈ [0, n] with m+ n is even such that
(1) (−1)m+iSi(t, x) > 0 for t ≥ t0 and i ∈ [m,n].
(2) If m > 1, then there exists T ≥ t0 such that Si(t, x) > 0 for t ≥ T and

i ∈ [1,m− 1].

Proof. First we shall prove that Sn(t, x) > 0 for t ≥ t0. If not, then there
exists some t1 ≥ t0 such that Sn(t1, x) < 0 since S4

n (t, x) < 0 and Sn(t, x) is
strictly decreasing on [t0,∞)T. It follows Sn(t, x) ≤ Sn(t1, x) < 0 for t ≥ t1.
But from Lemma 2.1 we find limt−→∞ x(t) = −∞, which is a contradiction to
x(t) > 0 (t ≥ t0). Thus Sn(t, x) > 0 for t ≥ t0 and there exists a smallest
integer 0 ≤ m ≤ n with m+n even such that (−1)m+iSi(t, x) > 0 for t ≥ t0 and
m ≤ i ≤ n.

Next let m > 1. Then we get S4
m−1(t, x) = [Sm(t, x)/am(t)]

1
αm > 0 (t ≥ t0)

and either there exists t1 ≥ t0 such that Sm−1(t, x) ≥ Sm−1(t1, x) > 0 for t ≥ t1
or Sm−1(t, x) < 0 for t ≥ t0.

If there exists t1 ≥ t0 such that Sm−1(t, x) ≥ Sm−1(t1, x) > 0 for t ≥ t1, then
from Lemma 2.1 we find limt−→∞ Si(t, x) = ∞ for 0 ≤ i ≤ m− 1.

If Sm−1(t, x) < 0 for all t ≥ t0, then using arguments similar to ones developed
in the above it follows Sm−2(t, x) > 0 for all t ≥ t0, which is a contradiction to
the definition of m. The proof is completed. ¤

Using arguments similar to ones developed in the proof of Lemma 2.2, we can
get

Lemma 2.3. Assume that (2.1) holds. If S4
n (t, x) > 0 and x(t) > 0 for t ≥ t0,

then there exists T ≥ t0 such that Si(t, x) > 0 for t ≥ T and i ∈ [1, n] or there
exists an integer m ∈ [0, n− 1] with m+ n is odd such that

(1) (−1)m+iSi(t, x) > 0 for t ≥ t0 and i ∈ [m,n].
(2) If m > 1, then there exists T1 ≥ t0 such that Si(t, x) > 0 for t ≥ T1 and

i ∈ [1,m− 1].

Lemma 2.4 ([4] L’Hospital’s Rule). Assume that f and g are differentiable on
T with limt−→∞ g(t) = ∞. If

g(t) > 0 and g4(t) > 0 for all t ≥ t0,



Oscillatory behavior and comparison for higher order nonlinear dynamic equations 293

then

lim
t−→∞

f4(t)

g4(t)
= r (or ∞) implies lim

t−→∞
f(t)

g(t)
= r (or ∞).

Lemma 2.5 ([8] Knaster’s fixed-point theorem). Assume that (X,≤) is an or-
dered set. Let Ω be a subset of X with the following properties: The infimum of
Ω belongs to Ω and every nonempty subset of Ω has a supremum which belongs
to Ω. If S : Ω −→ Ω is an increasing mapping, that is, x ≤ y implies Sx ≤ Sy,
then S has a fixed point in Ω.

Lemma 2.6. Let δ = 1 and n = 2r− 1 (r ∈ N). Assume that (2.1) holds. Then
(1.1) has no eventually positive solution if and only if

S4
2r−1(t, x) + p(t)f(x(g(t))) ≤ 0 (2.2)

has no eventually positive solution.

Proof. Sufficiency is obvious.
Necessity. Assume that (1.1) has no eventually positive solution. Suppose the

contrary that (2.2) has an eventually positive solution y, namely, there exists
t1 ≥ t0 such that y(t) > 0 and y(g(t)) > 0 for t ≥ t1. Then

S4
2r−1(t, y) ≤ −p(t)f(y(g(t))) < 0 for t ≥ t1.

By Lemma 2.2, there exist an odd integer m ∈ [1, 2r − 1] and an t2(∈ T)≥ t1
such that

(1) (−1)m+iSi(t, y) > 0 for t ≥ t1 and i ∈ [m, 2r − 1].
(2) Si(t, y) > 0 for t ≥ t2 and i ∈ [0,m− 1].

Let T (∈ T) ≥ t2 such that g(t) ≥ t2 for t ≥ T . For any x ∈ Crd([t0,∞)T,R), u ∈
Crd(T, (0,∞)) and v ∈ Crd(T,T), we write

Ak(n,m, x, u, v, t) =





∫∞
t

u(s)f(x(v(s)))∆s, if k = n+ 1,∫∞
t

[Ak+1(n, m, x, u, v, s)

ak(s)

] 1
αk ∆s, if m+ 1 ≤ k ≤ n, (2.3)

∫ t

T

[Ak+1(n, m, x, u, v, s)

ak(s)

] 1
αk ∆s, if 1 ≤ k ≤ m.

By replacing x by y and integrating both sides in (2.2) from t ≥ T to ∞, we
get

S2r−1(t, y) ≥ A2r(2r − 1,m, y, p, g, t).

Thus

S∆
2r−2(t, y) ≥

[A2r(2r − 1,m, y, p, g, t)

a2r−1(t)

] 1
α2r−1 .

Integrating the above from t ≥ T to ∞, it follows

S2r−2(t, y) ≤ −A2r−1(2r − 1,m, y, p, g, t),

then

S∆
2r−3(t, y) ≤ −[A2r−1(2r − 1,m, y, p, g, t)

a2r−2(t)

] 1
α2r−2 .
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Continuing the above process we can obtain that for t ≥ T ,

S∆
m−1(t, y) ≥

[Am+1(2r − 1,m, y, p, g, t)

am(t)

] 1
αm .

Integrating it from T to t ≥ T , we get

Sm−1(t, y) ≥ Am(2r − 1,m, y, p, g, t).

Continuing the above process, we can get that for t ≥ T ,

y(t) ≥ y(T ) +A1(2r − 1,m, y, p, g, t). (2.4)

Let X be the Banach space of all bounded rd-continuous functions on [t0,∞)T
with sup norm ||x|| = supt≥t0 |x(t)|. Let

Ω = {ω ∈ X : 0 ≤ ω(t) ≤ 1 for t ≥ t0},
which is endowed with usual point-wise ordering ≤: w1 ≤ w2 ⇐⇒ w1(t) ≤ w2(t)
for all t ≥ t0.

It is easy to see that supA ∈ Ω for any nonempty A ⊂ Ω. Define a mapping
U on Ω by

(Uw)(t) =

{
1, if t0 ≤ t ≤ T,
1

y(t) [y(T ) +A1(2r − 1,m,wy, p, g, t)], if t ≥ T.

By (2.4), it is easy to check that UΩ ⊂ Ω and U is nondecreasing. Therefore,
by Lemma 2.5, there exists w ∈ Ω such that Uw = w. Hence for t ≥ T ,

w(t) =
1

y(t)
[y(T ) +A1(2r − 1,m,wy, p, g, t)].

Let z = wy, then z is rd-continuous and for t ≥ T ,

z(t) = y(T ) +A1(2r − 1,m, z, p, g, t) > 0.

It is easy to see that z satisfies (1.1), that is, z is an eventually positive solution
of (1.1), which is a contradiction. The proof is completed. ¤

Lemma 2.7. Let δ = 1 and n = 2r − 1 (r ∈ N). Assume that (2.1) holds.
Furthermore, suppose that g(t) ≥ h(t) for t ≥ t0 and q ∈ Crd(T, (0,∞)) with
p(t) ≥ q(t) for t ≥ t0. If (1.1) has an eventually positive solution, then

S4
2r−1(t, x) + q(t)f(x(h(t))) = 0 (2.5)

also has an eventually positive solution.

Proof. Assume that (1.1) has an eventually positive solution y, namely, there
exists a sufficiently large t1 ≥ t0 such that y(t) > 0, y(g(t)) > 0 and y(h(t)) > 0

for t ≥ t1, then S4
2r−1(t, y) = −p(t)f(x(g(t))) < 0 (t ≥ t1). By Lemma 2.2, there

exist an odd integer m ∈ [1, 2r − 1] and an t2(∈ T)≥ t1 such that
(1) (−1)m+iSi(t, y) > 0 for t ≥ t1 and i ∈ [m, 2r − 1].
(2) Si(t, y) > 0 for t ≥ t2 and i ∈ [0,m− 1].
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Let T (∈ T) ≥ t2 such that h(t) ≥ t2 for t ≥ T . From g(t) ≥ h(t), p(t) ≥ q(t) ≥ 0
and (2.4), we get that for t ≥ T ,

y(t) ≥ y(T ) +A1(2r − 1,m, y, q, h, t), (2.6)

where A1(2r− 1,m, y, q, h, t) is defined as (2.3). The rest of the proof is similar
to that of Lemma 2.6 and the details are omitted. The proof is completed. ¤

Let m ≥ 2, ck ∈ (0,∞) (1 ≤ k ≤ m), β be a quotient of two odd positive
integers and bk ∈ Crd(T, (0,∞)) (2 ≤ k ≤ m). We define

A(ck−1, · · · , cm, bk, · · · , bm, β, T, t)

=

{
cm−1 +

∫ t

T

[
cm

bm(s)

] 1
β 4s, if k = m,

ck−1 +
∫ t

T
A(ck,··· , cm, bk+1,··· , bm, β, T, s)

bk(s)
4s, if 2 ≤ k < m.

Theorem 2.1. Let δ = 1 and n = 2r − 1 (r ∈ N). Assume that (2.1) and the
condition (C) hold. Then the oscillation of (1.1) and (1.2) is equivalent.

Proof. By Lemma 2.7 the oscillation of (1.2) implies that (1.1) is oscillatory.
Now assume that (1.1) is oscillatory. Suppose the contrary that (1.2) has

a nonoscillatory solution y. Without loss of generality, we assume that there

exists t1 ≥ t0 such that y(t) > 0 and y(h(t)) > 0 for t ≥ t1. Then S4
2r−1(t, y) =

−p(t)f(y(h(t))) < 0 for t ≥ t1. By Lemma 2.2, there exist an odd integer
m ∈ [1, 2r − 1] and an T (∈ T)≥ t1 such that

(1) (−1)m+iSi(t, y) > 0 for t ≥ t1 and i ∈ [m, 2r − 1].
(2) Si(t, y) > 0 for t ≥ T and i ∈ [0,m− 1].

Since Sm(t, y) > 0 and S∆
m(t, y) = [Sm+1(t, y)/am+1(t)]

1
αm+1 < 0 for t ≥ T , we

have

∞ > lim
t→∞

Sm(t, y) = L ≥ 0.

Then there exist ε > 0 and t2 ≥ T such that

Sm(t, y) ≤ L+
ε

2
and Sm−1(t, y) ≥ M(L+ ε)

1
αm for t ≥ t2,

where M is defined as the condition (C).
If m ≥ 2, then for t ≥ t2,

Sm−1(t, y) = Sm−1(t2, y) +

∫ t

t2

S∆
m−1(s, y)∆s

= Sm−1(t2, y) +

∫ t

t2

[Sm(s, y)

am(s)

] 1
αm ∆s

≤ A(Sm−1(t2, y), L+
ε

2
, am, αm, t2, t).

By induction, it follows that for t ≥ t2,

S1(t, y) ≤ A(S1(t2, y), · · · , Sm−1(t2, y), L+
ε

2
, a2, · · · , am, αm, t2, t).
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Choosing t3 ≥ t2 such that h(t) ≥ t2 for t ≥ t3. Then it follows from the
condition (C) that for t ≥ t3,

y(g(t))− y(h(t)) =

∫ g(t)

h(t)

y4(τ)∆τ =

∫ g(t)

h(t)

S1(s, y)

a1(s)
∆s

≤ MA(S1(t2, y), · · · , Sm−1(t2, y), (L+
ε

2
)

1
αm ,

a1, · · · , am−1, αm−1, t2, g(t)).

Let z(t) = y(t)−MA(S1(t2, y), · · · , Sm−1(t2, y), (L+ε/2)
1

αm , a1, · · · , am−1, αm−1, t2, t).
From Lemma 2.4, we get

lim
t→∞

y(t)

MA(S1(t2, y), · · · , Sm−1(t2, y), (L+ ε
2
)

1
αm , a1, · · · , am−1, αm−1, t2, t)

=
1

M
lim
t→∞

y4(t)

A4(S1(t2, y), · · · , Sm−1(t2, y), (L+ ε
2
)

1
αm , a1, · · · , am−1, αm−1, t2, t)

=
1

M
lim
t→∞

S1(t, y)

A(S2(t2, y), · · · , Sm−1(t2, y), (L+ ε
2
)

1
αm , a2, · · · , am−1, αm−1, t2, t)

=
1

M
lim
t→∞

S2(t, y)

A(S3(t2, y), · · · , Sm−1(t2, y), (L+ ε
2
)

1
αm , a3, · · · , am−1, αm−1, t2, t)

.........

=
1

M
lim
t→∞

Sm−1(t, y)

(L+ ε
2
)

1
αm

≥ 1

M

M(L+ ε)
1

αm

(L+ ε
2
)

1
αm

> 1,

which implies z > 0 eventually. Thus

S∆
2r−1(t, z) + p(t)f(z(g(t)))

= S∆
2r−1(t, y) + p(t)f(y(g(t))−MA(S1(t2, y), · · · , Sm−1(t2, y),

(L+
ε

2
)

1
αm , a1, · · · , am−1, αm−1, t2, g(t)))

≤ S∆
2r−1(t, y) + p(t)f(y(h(t))) = 0.

If m = 1. Choosing t3 ≥ t2 such that h(t) ≥ t2 for t ≥ t3. Then it follows
from the condition (C) that for t ≥ t3,

y(g(t))− y(h(t)) =

∫ g(t)

h(t)

y4(τ)∆τ =

∫ g(t)

h(t)

[S1(s, y)

a1(s)

] 1
α1 ∆s

≤ M(L+
ε

2
)

1
α1 .

Let z(t) = y(t) −M(L + ε
2 )

1
α1 . Then z(t) > 0 for t ≥ t3 , which implies z > 0

eventually and

S∆
2r−1(t, z) + p(t)f(z(g(t))) = S∆

2r−1(t, y) + p(t)f(y(g(t))−M(L+
ε

2
)

1
α1 )

≤ S∆
2r−1(t, y) + p(t)f(y(h(t))) = 0.
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Then z is an eventually positive solution of S∆
2r−1(t, x) + p(t)f(x(g(t))) ≤ 0.

By Lemma 2.6, we see that (1.1) has eventually positive solutions, which is a
contradiction. The proof is completed. ¤

Definition 2.1. A solution y of (1.1)( or S∆
n (t, x) + δp(t)f(x(g(t))) ≤ 0) is said

to be strongly eventually positive if y > 0 and y4 > 0 eventually.

Lemma 2.8. Let δ = 1 and n = 2r (r ∈ N). Suppose that (2.1) holds. Then
(1.1) has strongly eventually positive solutions if and only if

S4
2r(t, x) + p(t)f(x(g(t))) ≤ 0 (2.7)

has strongly eventually positive solutions.

Proof. Necessity is obvious.
Sufficiency. Suppose that y is a strongly eventually positive solution of (2.7).

Then there exists t1 ≥ t0 such that y(t) > 0 and y(g(t)) > 0 for t ≥ t1. So

S4
2r(t, y) ≤ −p(t)f(x(g(t))) < 0 for t ≥ t1. By Lemma 2.2 and Definition 2.1 ,

we see that there exist an even integer m ∈ [2, 2r] and an T (∈ T)≥ t1 such that
(1) (−1)m+iSi(t, y) > 0 for t ≥ t1 and i ∈ [m, 2r].
(2) Si(t, y) > 0 for t ≥ T and i ∈ [0,m− 1].

The rest of the proof is similar to that of Lemma 2.6. We note that z, eventually
positive solution of (1.1), satisfies that for t ≥ T ,

z(t) = y(T ) +A1(2r,m, z, p, g, t) (2.8)

and

z4(t) =
A2(2r,m, z, p, g, t)

a1(t)
> 0,

where Ak(2r,m, z, p, g, t) (k = 1, 2) is defined as (2.3). This implies that z is a
strongly eventually positive solution of (1.1). The proof is completed. ¤

Using arguments similar to ones developed in the proofs of Lemma 2.7 and
Lemma 2.8, we can get
Lemma 2.9. Let δ = 1 and n = 2r (r ∈ N). Assume that (2.1) holds. Further-
more, suppose that g(t) ≥ h(t) for t ≥ t0 and q ∈ Crd(T, (0,∞)) with p(t) ≥ q(t)
for t ≥ t0. If (1.1) has strongly eventually positive solutions, then

S4
2r(t, x) + q(t)f(x(h(t))) = 0 (2.9)

also has strongly eventually positive solutions.

Theorem 2.2. Let δ = 1 and n = 2r (r ∈ N). Assume that (2.1) and the
condition (C) hold, then (1.1) has strongly eventually positive solutions if and
only if (1.2) has strongly eventually positive solutions.

Proof. Necessity is from Lemma2.9.
Sufficiency. Suppose that y is a strongly eventually positive solution of (1.2),

namely, there exists t1 ≥ t0 such that y(t) > 0, y(h(t)) > 0 and y4(t) > 0

for t ≥ t1. Then S4
2r(t, y) = −p(t)f(y(h(t))) < 0 for t ≥ t1. By Lemma 2.2
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and Definition 2.1, we see that there exist an even integer m ∈ [2, 2r] and an
T (∈ T)≥ t1 such that

(1) (−1)m+iSi(t, y) > 0 for t ≥ t1 and i ∈ [m, 2r].
(2) Si(t, y) > 0 for t ≥ T and i ∈ [0,m− 1].

Since Sm(t, y) > 0 and S∆
m(t, y) = [Sm+1(t, y)/am+1]

1
αm+1 (t) < 0 for t ≥ T , we

have

∞ > lim
t→∞

Sm(t, y) = L ≥ 0.

Therefore there exist ε > 0 and t2 ≥ T such that

Sm(t, y) ≤ L+
ε

2
and Sm−1(t, y) ≥ M(L+ ε)

1
αm for t ≥ t2,

where M is defined as the condition (C). The rest of the proof is similar to that
of Theorem 2.1, We note that z, eventually positive solution of (2.7), satisfies
that

z(t) = y(t)−MA(S1(t2, y), · · · , Sm−1(t2, y), (L+
ε

2
)

1
αm , a1, · · · , am−1, αm−1, t2, t) > 0

eventually and z4 eventually. Then z is a strongly eventually positive solution
of (2.7). It follows from Lemma 2.8 that (1.1) has strongly eventually positive
solutions. The proof is completed. ¤

Definition 2.2. A solution y of (1.1) ( or S∆
n (t, x)+ δp(t)f(x(g(t))) ≥ 0) is said

to be strongly increasing if Si(t, y) > 0 eventually for every 0 ≤ i ≤ n .
Lemma 2.10. Let δ = −1 and n = 2r − 1 (r ≥ 2). Suppose that (2.1) holds.
Then (1.1) has an eventually positive and eventually increasing solution which
is not strongly increasing if and only if

S4
2r−1(t, x)− p(t)f(x(g(t))) ≥ 0 (2.10)

has an eventually positive and eventually increasing solution which is not strongly
increasing.

Proof. Necessity is obvious.
Sufficiency. Assume that y is an eventually positive and eventually increasing

solution of (2.10) which is not strongly increasing, namely, there exists t1 ≥ t0
such that y(t) > 0 and y(g(t)) > 0 for t ≥ t1, then S4

2r−1(t, y) ≥ p(t)f(y(g(t))) >
0 for t ≥ t1. It follows from Lemma 2.3 and Definition 2.2 that there exist an
even integer m ∈ [2, 2r − 2] and an T (∈ T)≥ t1 such that

(1) (−1)m+iSi(t, y) > 0 for t ≥ t1 and i ∈ [m, 2r − 1].
(2) Si(t, y) > 0 for t ≥ T and i ∈ [0,m− 1].

The rest of the proof is similar to that of Lemma 2.6. We note that z, eventually
positive solution of (1.1), satisfies that for t ≥ T ,

z(t) = y(T ) +A1(2r − 1,m, z, p, g, t) (2.11)

and

z4(t) =
A2(2r − 1,m, z, p, g, t)

a1(t)
> 0
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and

S2r−1(t, z) = −
∫ ∞

t

p(s)f(z(g(s)))∆s < 0,

where Ak(2r − 1,m, z, p, g, t) (k = 1, 2) is defined as (2.3). Thus z is an even-
tually positive and eventually increasing solution of (1.1) which is not strongly
increasing . The proof is completed. ¤

Using arguments similar to ones developed in the proofs of Lemma 2.7 and
Lemma 2.10, we can get
Lemma 2.11. Let δ = −1 and n = 2r − 1 (r ≥ 2). Suppose that (2.1) holds
and g(t) ≥ h(t) for t ≥ t0 and q ∈ Crd(T, (0,∞)) with p(t) ≥ q(t) for t ≥ t0. If
(1.1) has an eventually positive and eventually increasing solution which is not
strongly increasing, then

S4
2r−1(t, x)− q(t)f(x(h(t))) = 0 (2.12)

also has an eventually positive and eventually increasing solution which is not
strongly increasing.

Theorem 2.3. Let δ = −1 and n = 2r − 1 (r ≥ 2). Suppose that (2.1) and the
condition (C) hold, then (1.1) has an eventually positive and eventually increas-
ing solution which is not strongly increasing if and only if (1.2) has an eventually
positive and eventually increasing solution which is not strongly increasing.

Proof. Necessity is from Lemma2.11.
Sufficiency. Assume that y is an eventually positive and eventually increasing

solution of (1.2) which is not strongly increasing, namely, there exists t1 ≥ t0 such

that y(t) > 0 and y(h(t)) > 0 for t ≥ t1. Then S4
2r−1(t, y) = p(t)f(y(h(t))) > 0

for t ≥ t1. It follows from Lemma 2.3 and Definition 2.2 that there exist an even
integer m ∈ [2, 2r − 2] and an T (∈ T)≥ t1 such that

(1) (−1)m+iSi(t, y) > 0 for t ≥ t1 and i ∈ [m, 2r − 1].
(2) Si(t, y) > 0 for t ≥ T and i ∈ [0,m− 1].

Since Sm(t, y) > 0 and Sm+1(t, y) = am+1(t)[S
∆
m(t, y)]αm+1 < 0 for t ≥ T , we

have
∞ > lim

t→∞
Sm(t, y) = L ≥ 0.

Then there exist ε > 0 and t2 ≥ t1 such that

Sm(t, y) ≤ L+
ε

2
and Sm−1(t, y) ≥ M(L+ ε)

1
αm for t ≥ t2,

where M is defined as the condition (C). The rest of the proof is similar to that
of Theorem 2.1, we note that z, eventually positive solution of (2.10), satisfies
that for sufficiently large t,

z(t) = y(t)−MA(S1(t2, y), · · · , Sm−1(t2, y), (L+
ε

2
)

1
αm , a1, · · · , am−1, αm−1, t2, t)

with S2r−1(t, z) = S2r−1(t, y) < 0 eventually and z4 > 0 eventually. By Lemma
2.10, we see that (1.1) has an eventually positive and eventually increasing so-
lution which is not strongly increasing. The proof is completed. ¤
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Lemma 2.12. Let δ = −1 and n = 2r (r ∈ N). Suppose that (2.1) holds. Then
(1.1) has an eventually positive solution which is not strongly increasing if and
only if

S4
2r(t, x)− p(t)f(x(g(t))) ≥ 0 (2.13)

has an eventually positive solution which is not strongly increasing.

Proof. Necessity is obvious.
Sufficiency. Assume that y is an eventually positive solution of (2.13) which

is not strongly increasing, namely, there exists t1 ≥ t0 such that y(t) > 0 and

y(g(t)) > 0 for t ≥ t1. Then S4
2r(t, y) ≥ p(t)f(x(g(t))) > 0 for t ≥ t1. By Lemma

2.3, there exist an odd integer m ∈ [1, 2r − 1] and an T (∈ T)≥ t1 such that
(1) (−1)m+iSi(t, y) > 0 for m ≤ i ≤ 2r and t ≥ t1.
(2) Si(t, y) > 0 for t ≥ T and i ∈ [0,m− 1].

The rest of the proof is similar to that of Lemma 2.6, we note that z, eventually
positive solution of (1.1), satisfies that for t ≥ t2,

z(t) = y(T ) +A1(2r,m, z, p, g, t) (2.14)

and

S2r(t, z) = −
∫ ∞

t

p(s)f(z(g(s)))∆s < 0,

where A1(2r,m, z, p, g, t) is defined as (2.3). Then z is an eventually positive
solution of (1.1) which is not strongly increasing. The proof is completed. ¤

Using arguments similar to ones developed in the proofs of Lemma 2.7 and
Lemma 2.12, we can obtain
Lemma 2.13. Let δ = −1 and n = 2r (r ∈ N). Suppose that (2.1) holds and
g(t) ≥ h(t) for t ≥ t0 and q ∈ Crd(T, (0,∞)) with p(t) ≥ q(t) for t ≥ t0. If (1.1)
has an eventually positive solution which is not strongly increasing, then

S4
2r(t, x)− q(t)f(x(h(t))) = 0 (2.15)

also has an eventually positive solution which is not strongly increasing.

Theorem 2.4. Let δ = −1 and n = 2r (r ∈ N). Suppose that (2.1) and the
condition (C) hold. Then (1.1) has an eventually positive solution which is not
strongly increasing if and only if (1.2) has an eventually positive solution which
is not strongly increasing.

Proof. Necessity is from Lemma2.13.
Sufficiency. Assume that y is an eventually positive solution of (1.2) which

is not strongly increasing , namely, there exists t1 ≥ t0 such that y(t) > 0 and

y(h(t)) > 0 for t ≥ t1. Then S4
2r(t, y) = p(t)f(g(h(t))) > 0 for t ≥ t1. By Lemma

2.3, there exist an odd integer m ∈ [1, 2r − 1] and an T (∈ T)≥ t1 such that
(1) (−1)m+iSi(t, y) > 0 for m ≤ i ≤ 2r and t ≥ t1.
(2) Si(t, y) > 0 for t ≥ T and i ∈ [0,m− 1].

Since Sm(t, y) > 0 and Sm+1(t, y) = am+1(t)[S
∆
m(t, y)]αm+1 < 0 for t ≥ T , we
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have
∞ > lim

t→∞
Sm(t, y) = L ≥ 0.

Thus there exist ε > 0 and t2 ≥ t1 such that

Sm(t, y) ≤ L+
ε

2
and Sm−1(t, y) ≥ M(L+ ε)

1
αm for t ≥ t2,

where M is defined as the condition (C). The rest of the proof is similar to that
of Theorem 2.1, we note that z, eventually positive solution of (2.13), satisfies
that for sufficiently large t,

z(t) =





y(t)−MA(S1(t2, y), · · · , Sm−1(t2, y), (L+ ε
2 )

1
αm

a1, · · · , am−1, αm−1, t2, t), if m ≥ 2,

y(t)−M(L+ ε
2 )

1
αm , if m = 1.

with S2r(t, z) = S2r(t, y) < 0 eventually. By Lemma 2.12, we see that (1.1) also
has an eventually positive solution which is not strongly increasing. The proof
is completed. ¤

3. Example

In this section, we give an example to illustrate our main results.

Example 3.1. Consider the following higher order dynamic equation

S4
n (t, y) + δp(t)yβ(t) = 0 (3.1)

and
S4
n (t, y) + δp(t)yβ(g(t)) = 0, (3.2)

on time scales T = ∪∞
k=1[2k, 2k+ 1], where n ≥ 2, g ∈ Crd(T,T) with t ≤ g(t) ≤

t+M (M is a constant), δ = 1 or −1, α and β are the quotient of odd positive
integers, an(t) = tα, ak(t) = 1 (1 ≤ k ≤ n− 1),

p(t) =

{
(n−1)α[(n−1)!]α

t(n−1)α+1−β [t2+(−1)n+1δ]β
, if t ∈ ∪∞

k=1[2k, 2k + 1),
[(t+n)α−(t+1)α][(n−1)!]αtβ

[(t+1)(t+2)···(t+n)]α[t2+(−1)n+1δ]β
, if t ∈ {2k + 1 : k ∈ N},

and

Sk(t, x) =





x(t), if k = 0,

ak(t)S
4
k−1(t), if 1 ≤ k ≤ n− 1,

an(t)[S
4
n−1(t)]

α, if k = n.

It is obvious that y(t) = t + (−1)n+1δ/t is a positive solution of (3.1), y4(t) =
1 + (−1)n+2δ/tσ(t) > 0, and

Sn(t, y) =

{
[δ(n−1)!]α

t(n−1)α , if t ∈ ∪∞
k=1[2k, 2k + 1),

[δ(n−1)!]α

[(t+1)(t+2)···(t+n−1)]α , if t ∈ {2k + 1 : k ∈ N},
and

S4
n (t, y) =

{
(1−n)α[δ(n−1)!]α

t(n−1)α+1 , if t ∈ ∪∞
k=1[2k, 2k + 1),

[(t+1)α−(t+n)α][δ(n−1)!]α

[(t+1)(t+2)···(t+n)]α , if t ∈ {2k + 1 : k ∈ N}.
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It is easy to check that∫ ∞

2

4s

ak(s)
=

∫ ∞

2

4s = ∞ for all 1 ≤ k ≤ n− 1

and ∫ ∞

2

[ 1

an(s)

] 1
α4s =

∫ ∞

2

4s

s
= ∞.

Then (2.1) holds. On the other hand, for any T ∈ T, it is easy to check that if
t ≥ T , then t ≤ g(t), and

∫ g(t)

t

[ 1

a1(s)

] 1
α1 4s =

∫ g(t)

t

4s ≤ M,

and for 2 ≤ i ≤ n,

∫ g(t)

t

1

a1(u1)

∫ u1

T

1

a2(u2)
...

∫ ui−1

T

[ 1

ai(ui)

] 1
αi ∆ui...∆u1

=

{ ∫ g(t)

t

∫ u1

T
...
∫ ui−1

T
∆ui...∆u1, if 2 ≤ i ≤ n− 1,∫ g(t)

t

∫ u1

T
...
∫ un−1

T

[
1
uα
n

] 1
α∆un...∆u1, if i = n.

≤
∫ g(t)

t

∫ g(t)

T

∫ u2

T

...

∫ ui−1

T

∆ui...∆u1

≤ M

∫ g(t)

T

1

a1(u1)

∫ u1

T

1

a2(u2)
...

∫ ui−2

T

1

ai−1(ui−1)
∆ui−1...∆u1.

Then the condition (C) holds.

(1) If n is an odd integer and δ = 1, then we see that (3.2) has an eventually
positive solution by Theorem 2.1; if n is an even integer and δ = 1, then we see
that (3.2) has strongly eventually positive solution by Theorem 2.2.

(2) If n is an odd integer and δ = −1, then we see that (3.2) has an eventually
positive and eventually increasing solution which is not strongly increasing by
Theorem 2.3; if n is an even integer and δ = −1, then we see that (3.2) has an
eventually positive solution which is not strongly increasing by Theorem 2.4.
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