Abstract
Desirability approaches have been proposed to find an optimum of multiple response problem. The existing desirability approaches use either of mean or min of individual desirability in aggregation of multiple responses. However, in order to find an optimum having high mean and low dispersion among individual desirability, the dispersion needs to be simultaneously considered with its mean. This study proposes bias and variance (BV) method which aggregates bias (ideal target-mean) and variance of individual desirability in multiple response optimization. The proposed BV method was applied to an example to evaluate its usefulness by comparing with existing methods. Evaluation results showed that the solution of BV method was a fairly good compared with DS (Derringer and Suich, 1980) and KL (Kim and Lin, 2000) methods. The BV method can be utilized to multiple response surface problems when decision makers want to find an optimum having high mean and low variance among responses.