DOI QR코드

DOI QR Code

Synthesis and Thermal Cyclization of Aromatic Polyhydroxyamides(I) -Effect of the Benzene Ring Substitution Structure-

방향족 폴리히드록시아미드의 합성과 열적 고리화 거동(I) -벤젠고리 치환구조의 영향-

  • Jee, Min Ho (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Lee, Ju Yong (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Baik, Doo Hyun (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
  • 지민호 (충남대학교 유기소재.섬유시스템 공학과) ;
  • 이주용 (충남대학교 유기소재.섬유시스템 공학과) ;
  • 백두현 (충남대학교 유기소재.섬유시스템 공학과)
  • Received : 2012.09.08
  • Accepted : 2012.10.07
  • Published : 2012.10.31

Abstract

We have synthesized polyhydroxyamides (PHAs), a possible precursor which could be converted to polybenzoxazole (PBO) through a thermal cyclization reaction, by low temperature solution polymerization of 3,3'${\AE}$-dihydroxybenzidine with terephthaloyl chloride or isophthaloyl acid. Structural characteristics, solubility, thermal cyclization, and thermal decomposition of the PHAs were investigated by the FT-IR, DSC and TGA in order to understand the effect of chemical structure of acyl chlorides on the thermal properties of PHAs. The FT-IR study reveals that two types of PHAs can cyclize on heating and be transformed into PBOs. The meta-type PHA (m-PHA) shows better solubility in N,N-dimethylformamide and dimethyl sulfoxide than the para-type PHA (m-PHA). DSC and TGA results demonstrate that the m-PHA can cyclize at lower temperature than p-PHA, which is due to the difference in activation energy of thermal cyclization between m-PHA and p-PHA. TGA results reveal that the p-PHA has better thermal stability than m-PHA while in flame.

Keywords

Acknowledgement

Supported by : 금오공과대학교 산학협력단

References

  1. 김영식, 박성민, "세계 탄소섬유 및 아라미드 섬유 시장동향", Fiber Tech Ind, 2011, 15(1), 43-60.
  2. 서민강, 박수진, "탄소섬유 제조방법 및 응용분야", Polym Sci Tech, 2010, 21(2), 130-140.
  3. 이중규, 김성훈, "폴리이미드 필름의 응용과 개발 동향", Fiber Tech Ind, 2007, 11(4), 251-260.
  4. S. H. Lin, F. Li, S. Z. D. Cheng, and F. W. Harris, "Organo- Soluble Polyimides: Synthesis and Polymerization of 2,2'-Bis (trifluoromethyl)-4,4',5,5'-Biphenyltetracarboxylic Dianhydride", Macromolecules, 1998, 31(7), 2080-2086. https://doi.org/10.1021/ma971396a
  5. J. F. Wolfe and F. E. Arnold, "Rigid-Rod Polymers. 1. Synthesis and Thermal Properties of Para-Aromatic Polymers with 2,6-Benzobisoxazole Units in the Main Chain", Macromolecules, 1981, 14(4), 909-915. https://doi.org/10.1021/ma50005a004
  6. M. E. Hunsaker, G. E. Price, and S. J. Bai, “Processing, Structure and Mechanics of Fibres of Heteroaromatic Oxazole Polymers”, Polymer, 1992, 33(10), 2128-2135. https://doi.org/10.1016/0032-3861(92)90879-2
  7. 백두현, 이민호, "초고성능 PBO 섬유", Fiber Tech Ind, 2007, 11(4), 261-270.
  8. F. Dowell, “Predictions for High-performance Polymers (including first supe-strong polymers) for Hostile Environments”, Polym Prep, 1991, 32(2), 245-246.
  9. W. D. Joseph, R. Mercier, A. Prasad, H. Marand, and J. E. Mcrtath, "Synthesis of 4,4'-isopropylidiene Diphenol(bisphenol A) Based Polybenzoxazoles Via an Acid-catalyzed Solution Cylization Process", Polymer 1993, 34, 866-869. https://doi.org/10.1016/0032-3861(93)90375-K
  10. R. J. Perry and B. D. Wilson, "Palladium-catalyzed Syntheses of Poly(amino-ols)-poly(benzoxazole) Precursors", Macromolecules, 1994, 27, 40-44. https://doi.org/10.1021/ma00079a007
  11. C. Gao and S. W. Kantor, "Synthesis of Precursor Flame Suppressing Polymers", Spring SPE Meeting, 1996, 3072- 3073.
  12. S. K. Park, S. H. Cho, and R. J. Farris, "Dry-jet Wet Spinning of Polyhydroxyamide Fibers", Fiber Polym, 2000, 1(2), 92-96. https://doi.org/10.1007/BF02875191
  13. D. H. Baik and W. O. Lee, "A Study on the High Performance Nanocomposite Fibers Based on Polybenzoxazoles(I) - Synthesis and Characterization of Polyhydroxyamide-clay Nanocomposites-", Text Sci Eng, 2005, 42(5), 296-301.
  14. D. H. Baik, H. Y. Kim, and S. W. Kantor, "Synthesis and Cyclization of Aromatic Polyhydroxyamides Containing Trifluoromethyl Groups", Fiber Polym, 2002, 3(3), 91-96.
  15. Y. Yoshioka, "Change in Morphology of Polyhydroxyamide, Polybenzoxazole and Carbon Particles by Thermal Treatments", Open Surf Sci J, 2012, 4, 1-5. https://doi.org/10.2174/1876531901204010001
  16. A. Mavrich, F. Fondeur, H. Ishida, J. L. Koenig, and H. D. Wagner, "The Study of Fiber-Matrix Interactions Via FT-IR Microscopy and NMR Imaging", J Adhesion, 1994, 46, 91-102. https://doi.org/10.1080/00218469408026652
  17. E. G. Chatzi, S. L. Tidrick, and J. L. Koenig, “Characterization of the Surface Hydrolysis of Kevlar-49 Fibers by Diffuse Reflectance FTIR Spectroscopy”, J Polym Sci Part B: Polym Phys, 1988, 26, 1585-1593. https://doi.org/10.1002/polb.1988.090260803
  18. D. S. Yoon, J. K. Choi, and B. W. Jo, “Syntheses and Characterization of PBO Precursors Containing Dimethylphenoxy and/or MPEG Pendent Groups”, Polymer(Korea), 2005, 29(5), 493-500.
  19. Y. J. Kim, B. R. Einsla, C. N. Tchatchoua, and J. E. McGrath, “Synthesis of High Molecular Weight Polybenzoxazoles in Polyphosphoric Acid and Investigation of Their Hydrolytic Stability under Acidic Conditions”, High Performance Polymers, 2005, 17, 377-401. https://doi.org/10.1177/0954008305055558
  20. H. Steve, L. C. Chang, and K. Chuan, “Synthesis and Properties of Polybenzoxazole-clay Nanocomposites”, Polymer, 2002, 43, 4097-4101. https://doi.org/10.1016/S0032-3861(02)00249-5
  21. D. H. Baik, E. K. Kim, and M. K. Kim, “Praparation of New Heat-resistant Fiber Materials Using Polymeric Precursors to Polybenzoxazoles(I) -Synthesis and Thermal Cyclization of PHA Derivatives-”, J Korean Fiber Soc, 2003, 40(1), 13-19.
  22. J. S. Lee, M. H. Jee, M. H. Lee, and D. H. Baik, “Preparation and Characterization of Polyhydroxyamide/MWNT Nanocomposites”, Text Sci Eng, 2010, 47(1), 7-14.
  23. H. E. Kissinger, “Reaction Kinetics in Differential Thermal Analysis”, Anal Chem, 1957, 29(11), 1702-1706. https://doi.org/10.1021/ac60131a045
  24. G. M. Wu and C. H. Hung, “Mechanical Properties and Thermogravimetric Analysis of PBO Thin Films”, J Ach Mater Manufac Eng, 2006, 17(1-2), 27-32.
  25. S. Bourbigot, X. Flambard, and F. Poutch, “Study of the Thermal Degradation of High Performance Fibres-Application to Polybenzoxazole and p-Aramid Fibres”, Polym Degrad Stab, 2001, 74, 283-290. https://doi.org/10.1016/S0141-3910(01)00159-8

Cited by

  1. Synthesis and Characterization of para-Aramid Copolymers Containing Cyano Groups vol.51, pp.3, 2014, https://doi.org/10.12772/TSE.2014.51.134
  2. Thermal Cyclization Behavior of Polyhydroxyamide Copolymers vol.53, pp.5, 2016, https://doi.org/10.12772/TSE.2016.53.340
  3. Synthesis and Thermal Cyclization of Fluorine-Containing Polyhydroxyamides vol.51, pp.5, 2014, https://doi.org/10.12772/TSE.2014.51.259
  4. Study on Polyhydroxyamide/Carbon Nanotube Nanocomposite Fibers vol.52, pp.6, 2015, https://doi.org/10.12772/TSE.2015.52.361
  5. Synthesis and Thermal Cyclization of Aromatic Polyhydroxyamides(II) -Effect of Fluoro-substituents- vol.50, pp.5, 2013, https://doi.org/10.12772/TSE.2013.50.308
  6. Synthesis and characterization of polyhydroxyamide copolymers as precursors of polybenzoxazoles vol.16, pp.2, 2015, https://doi.org/10.1007/s12221-015-0239-y
  7. Synthesis and thermal properties of polyhydroxyamide copolymer and its derivatives vol.17, pp.5, 2016, https://doi.org/10.1007/s12221-016-6207-3
  8. Effects of Drawing and Heat-Treatment Conditions on the Structure and Mechanical Properties of Polyhydroxyamide and Polybenzoxazole Fibers vol.19, pp.8, 2018, https://doi.org/10.1007/s12221-018-8241-9