• Title/Summary/Keyword: precursor to PBO

Search Result 5, Processing Time 0.024 seconds

Synthesis and Cyclization of Aromatic Polyhydroxyamides. 1. Model Compound Study

  • Kim, Hae-Young;Kim, Myung-Kyoon;Baik, Doo-Hyun;Simon Kantor
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.10a
    • /
    • pp.37-40
    • /
    • 1998
  • Aromatic polybenzoxazoles have been known since 1964 as a class of aromatic heterocyclic polymers that exhibit excellent thermal stability. Polyhydroxyamides (PHA), precursor polymers to PBO, can cyclize to farm stable heterocyclic polymers with the simultaneous release of small molecules, which can be expected to act as a fire quencher. (omitted)

  • PDF

Thermal Cyclization of Aromatic Polyhydroxyamides and its Derivatives(I) (폴리히드록시아미드와 그 치환체의 고리화 반응(I))

  • Kim, Eun-Kyoung;Kim, Myung-Kyoon;Baik, Doo-Hyun
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.347-350
    • /
    • 2002
  • Wholly aromatic polybenzoxazoles(PBO) are well established as high performance materials with excellent thermal stability and mechanical properties. Heterocyclic precursor polymers such as polyhydroxyamides(PHA) have been interested in the field of high performance flame retardant polymers.[1] Precusor polymers have the advantages that they are easier to process, don't require strong solvents and can adsorb large amounts of heat energy during the cyclization process. (omitted)

  • PDF

Synthesis and Cyclization of Aromatic Polyhydroxyamides. 2. Polyhydroxyamides Containing Trifluoromethyl Group

  • Kim, Myung-Kyoon;Kim, Hae-Young;Baik, Doo-Hyun;Simon Kantor
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.10a
    • /
    • pp.41-44
    • /
    • 1998
  • Wholly aromatic polybenzoxazoles (PBO) are well established as high performance materials with excellent thermal stability and mechanical properties. Heterocyclic precursor polymers such as polyhydroxyamides (PHA) have been interested in the field of high performance flame retardant polymers. The PHAs can be converted to PBOs when ignited. (omitted)

  • PDF

Syntheses and Characterization of PBO Precursors Containing Dimethylphenoxy and/or MPEG Pendant Groups (Dimethylphenoxy와 MPEG 팬던트 그룹을 갖는 폴리벤즈옥사졸 전구체의 합성 및 특성)

  • Yoon Doo-Soo;Choi Jae-Kon;Jo Byung-Wook
    • Polymer(Korea)
    • /
    • v.29 no.5
    • /
    • pp.493-500
    • /
    • 2005
  • Polyhydroxyamides(PHAs) having poly(ethylene glycol)methyl ether (MPEG) and/or dimethylphenoxy pendant groups were synthesized by solution polycondensation at low temperature. The inherent viscosities of the PHAs measured at $35^{\circ}C$ in DMAC or DMAc/LiCl solution were in the range of $0.51\~2.31dL/g$. This precursor polymers were studied by FT-IR, $1H-NMR$, DSC, and TGA. Solubility of the precursors with higher MPEG unit was increased, especially the polymer having MPEG $(M_n=1100)$ was soluble or partially soluble in ethanol, methanol, and water as well as aprotic solvents, but the PBOs were nearly insoluble in a variety of solvents. PHAs were converted to polybenzoxazoles (PBOs) by thermal cyclization reaction with heat of endotherm. In case of the precursors having MPEG nit, the precursor polymers with a higher $M_n$ were fully cyclized at a lower temperature than one with a lower $M_n$.

Preparation of the Blends of Poly(amic acid) and PBO Precursor and Their Properties (Poly(amic acid)와 PBO 전구체의 블렌드 제조 및 특성)

  • Yoon, Doo-Soo;Choi, Jae-Kon;Jo, Byung-Wook
    • Polymer(Korea)
    • /
    • v.32 no.1
    • /
    • pp.77-84
    • /
    • 2008
  • The thermal properties, morphology, mechanical properties and gas permeability of the blends of poly (amic acid) (PAA) and poly (o-hydroxyamides) (PHAs) having pendant group was investigated. The 5% weight loss and major weight loss of the b)ends occurred in the ranges of $348{\sim}407^{\circ}C$ and $589{\sim}615^{\circ}C$ upon a heating process. After a thermical annealing, the tensile strength and initial modulus of blends increased $3.7{\sim}52.9%$ and $34.4{\sim}70%$ from the value of pure PAA, respectively. Especially the tensile strength and modulus of the PAA/MP-PHA=9/1 showed the highest values (97.5 MPa and 2.67 GPa, respectively), which were 53 and 70% higher than those of pure PAA. The fine PHA domains were found to be uniformly dispersed. The interfacial adhesion between PAA and PHA was identified to be good. The gas permeabilities of PAA/M-PHA blend increased with M-PHA contents.