DOI QR코드

DOI QR Code

Mechanical and Electrical Properties of Polyurethane Hybrid Nanocomposites Containing MWNT and Graphite as Conducting Nanoparticles

MWNT와 Graphite 전도성 나노입자를 함유한 폴리우레탄 하이브리드 나노복합체의 기계적 물성 및 전기적 특성 평가

  • Kang, Chan Sol (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Jee, Min Ho (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Baik, Doo Hyun (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
  • 강찬솔 (충남대학교 유기소재.섬유시스템공학과) ;
  • 지민호 (충남대학교 유기소재.섬유시스템공학과) ;
  • 백두현 (충남대학교 유기소재.섬유시스템공학과)
  • Received : 2012.05.08
  • Accepted : 2012.06.06
  • Published : 2012.06.30

Abstract

The synergistic effects of multi-walled carbon nanotubes (MWNT) and graphite on the structural features and mechanical and electrical properties of polyurethane (PU) nanocomposites were investigated as functions of filler content. SEM images of the PU/hybrid nanocomposite exhibit that the MWNTs and graphite are dispersed well in the PU matrix and form an interconnected network structure. Accordingly, the tensile strength and strain-at-break of the PU/hybrid nanocomposites were much higher than those of the PU/MWNT and PU/graphite nanocomposites at the same filler content. In addition, it is found that the PU/hybrid nanocomposite containing 1.25 wt% MWNTs and 1.25 wt% graphite shows the electrical conductivity of $1.2{\times}10^{-4}S/cm$, which is higher by three orders than that of PU/graphite nanocomposite containing 20.0 wt% graphite. The highly improved mechanical and electrical properties of the PU/hybrid nanocomposite are thought to be due to the interconnected network structure of MWNTs and graphite in the PU matrix.

Keywords

Acknowledgement

Supported by : 윈플러스

References

  1. D. W. Chung and Y. T. Park, "The Study on the Electrically Conductive Properties of Graphite-Nylon 6 Composite", J Korean Ind Eng Chem, 2000, 11(2), 239-242.
  2. F. He, M. Omoto, T. Yamamoto, and H. Kise, "Preparation of Polypyrrole-Polyurethane Composite Foam by Vapor Phase Oxidative Polymerization", J Appl Polym Sci, 1995, 55(2), 283-287. https://doi.org/10.1002/app.1995.070550211
  3. G. Shi, M. Rouabhia, Z. Wang, L. H. Dao, and Z. Zhang, "A Novel Electrically Conductive and Biodegradable Composite Made of Polypyrrole Nanoparticles and Polylactide", Biomaterials, 2004, 25(13), 2477-2488. https://doi.org/10.1016/j.biomaterials.2003.09.032
  4. D. H. Baik, S. M. Lee, Y. H. Park, Y. K. Lee, and Y. K. Son, "Electrical Conductivity of Anion-Containing Copolyesters and Polypyrrole Composite Films", Mol Cryst Liq Cryst, 1999, 327(1), 229-232. https://doi.org/10.1080/10587259908026820
  5. M. H. Jee, J. S. Lee, J. Y. Lee, Y. G. Jeong, and D. H. Baik, "Poly(ethylene 2,6-naphthalate)/MWNT Nanocomposites Prepared by in situ Polymerization : Rheological and Mechanical Properties", Fiber Polym, 2010, 11(1), 1-7. https://doi.org/10.1007/s12221-010-0001-4
  6. A. Anand K, U. S. Agarwall, and R. Joseph, "Carbon Nanotubes-Reinforced PET Nanocomposite by Melt-Compounding", J Appl Polym Sci, 2007, 104, 3090-3095. https://doi.org/10.1002/app.25674
  7. J. T. Yoon, Y. G. Jeong, S. C. Lee, and B. G. Min, "Influences of Poly(lactic acid)-grafted Carbon Nanotube on Thermal, Mechanical, and Electrical Properties of Poly(lactic acid)", Polym Adv Technol, 2008, 20, 631-638.
  8. S. W. Jin, K. O. Han, and H. I. Kim, "Effect of Interfacial Modification on the Characteristics of Poly(ethyl acrylate-cot- butyl acrylate)/Silica Nanocomposites", Polymer (Korea), 2004, 28(6), 487-493.
  9. S. Iijima and T. Ichihashi, "Single-shell Carbon Nanotubes of 1 nm Diameter", Nature, 1993, 363, 603-605. https://doi.org/10.1038/363603a0
  10. S. Guo, C. Zhang, W. Wang, T. Liu, W. C. Tjiu, C. He, and W. D. Zhang, "Preparation and Characterization of Polyurethane/Multiwalled Carbon Nanotube Composites", Polym & Polym Comp, 2008, 16(8), 501-507.
  11. F. Jiang, G. Hu, S. Wu, Y. Wei, and L. Zhang, "Preparation and Characterization of Polyurethane/Multi-Walled Carbon Nanotube Composites with Functional Performance", Polym & Polym Comp, 2008, 16(8), 765-768.
  12. W. Bauhofer and J. Z. Kovacs, "A Review and Analysis of Electrical Percolation in Carbon Nanotube Polymer Composites", Comp Sci Technol, 2009, 69, 1486-1498. https://doi.org/10.1016/j.compscitech.2008.06.018
  13. S. H. Jin, Y. B. Park, and K. H. Yoon, "Rheological and Mechanical Properties of Surface Modified Multi-Walled Carbon Nanotube-filled PET Composite", Comp Sci Technol, 2007, 67, 3434-3441. https://doi.org/10.1016/j.compscitech.2007.03.013
  14. J. Fritzsche, H. Lorenz, and M. Kluppel, "CNT Based Elastomer-Hybrid-Nanocomposites with Promising Mechanical and Electrical Properties", Macromol Mater Eng, 2009, 294, 551-560. https://doi.org/10.1002/mame.200900131
  15. H. Ismail, A. F. Ramly, and N. Othman, "The Effect of Carbon Black/Multiwall Carbon Nanotube Hybrid Fillers on the Properties of Natural Rubber Nanocomposites", Polym- Plast Technol Eng, 2011, 50, 660-666. https://doi.org/10.1080/03602559.2010.551380
  16. A. Yu, P. Ramesh, X. Sun, E. Bekyarova, M. E. Itkis, and R. C. Haddon, "Enhanced Thermal Conductivity in a Hybrid Graphite Nanoplatelet - Carbon Nanotube Filler for Epoxy Composites", Adv Mater, 2008, 20, 4740-4744. https://doi.org/10.1002/adma.200800401
  17. L. Bokobza, M. Rahmani, C. Belin, J. L. Bruneel, and N. E. E. Bounia, "Blends of Carbon Blacks and Multiwall Carbon Nanotubes as Reinforcing Fillers for Hydrocarbon Rubbers", Polym Sci Part B; Polym Phys, 2008, 46, 1939-1951. https://doi.org/10.1002/polb.21529
  18. P. C. Ma, B. Z. Tang, and J. K. Kim, "Effect of CNT Decoration with Silver Nanoparticles on Electrical Conductivity of CNT-Polymer Composites", Carbon, 2008, 46, 1497-1505. https://doi.org/10.1016/j.carbon.2008.06.048
  19. X. Zhou, G. Zhao, H. Niu, and Y. Liu, "Mechanical and Electrical Properties of Nanocomposites Containing Hybrid Fillers of Disk-like Copper and Conductive Carbon Black", J Mater Sci: Mater Electron, 2011, 22, 1737-1743. https://doi.org/10.1007/s10854-011-0354-5
  20. J. Li, P. S. Wong, and J. K. Kim, "Hybrid Nanocomposites Containing Carbon Nanotubes and Graphite Nanoplatelets", Mater Sci Eng, 2008, 483-484, 660-663. https://doi.org/10.1016/j.msea.2006.08.145
  21. P. C. Ma, M. Y. Liu, H. Zhang, S. Q. Wang, R. Wang, Y. K Wang, Y. K. Wong, B. Z. Tang, S. H. Hong, K. W. Paik, and J. K. Kim, "Enhanced Electrical Conductivity of Nanocomposites Containing Hybrid Fillers of Carbon Nanotubes and Carbon Black", Appl Mater Inter, 2009, 1(5), 1090-1096. https://doi.org/10.1021/am9000503
  22. J. Sumfleth, X. C. Adroher, and K. Schulte, "Synergistic Effects in Network Formation and Electrical Properties of Hybrid Epoxy Nanocomposites Containing Multi-Wall Carbon Nanocubes and Carbon Black", J Mater Sci, 2009, 44, 3241- 3247. https://doi.org/10.1007/s10853-009-3434-7
  23. J. Sumfleth, S. T. Buschhorn, and K. Sehulte, "Comparison of Rheological and Electrical Percolation Phenomena in Carbon Nanotube Filled Epoxy Polymers", J Mater Sci, 2011, 46, 659-669. https://doi.org/10.1007/s10853-010-4788-6
  24. S. Kumar, L. L. Sun, S. Caceres, B. Li, W. Wood, A. Perugini, R. G. Maguire, and W. H. Zhong, "Dynamic Synergy of Graphitic Nanoplatelets and Multi-Walled Carbon Nanotubes in Polyetherimide Nanocomposites", Nanotechnology, 2010, 21, 105702.
  25. R. Socher, B. Krause, S. Hermasch, R. Wursche, and P. Potschke, "Electrical and Thermal Properties of Polyamide 12 Composites with Hybrid Fillers Systems of Multi-Walled Carbon Nanotubes and Carbon Black", Comp Sci Tech, 2011, 71, 1053-1059. https://doi.org/10.1016/j.compscitech.2011.03.004
  26. F. Xin, L. Li, S. H. Chan, and J. Zhao, "Influences of Carbon Fillers on Electrical Conductivity and Crystallinity of Polyethylene terephthalate", J Comp Mater, 2012, 46(9), 1091-1099. https://doi.org/10.1177/0021998311414949
  27. M. Li and Y. G. Jeong, "Poly(ethylene terephthalate)/Exfoliated Graphite Nanocomposites with Improved Thermal Stability, Mechanical and Electricacl Properties", Comp Part A, 2011, 42, 560-566. https://doi.org/10.1016/j.compositesa.2011.01.015

Cited by

  1. Electrical Properties and Heating Performance of Polyurethane Hybrid Nanocomposite Films Containing Graphite and MWNTs vol.50, pp.2, 2013, https://doi.org/10.12772/TSE.2013.50.108
  2. Preparation of Electrically Conductive Composites Filled with Nickel Powder and MWCNT Fillers vol.54, pp.3, 2016, https://doi.org/10.9713/kcer.2016.54.3.410
  3. Characteristics of Electrical Heating Elements Coated with Graphene Nanocomposite on Polyester Fabric: Effect of Different Graphene Contents and Annealing Temperatures vol.19, pp.5, 2018, https://doi.org/10.1007/s12221-018-7825-8
  4. Electrical Heating Performance of Electro-Conductive Para-aramid Knit Manufactured by Dip-Coating in a Graphene/Waterborne Polyurethane Composite vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-018-37455-0