DOI QR코드

DOI QR Code

Up-Regulation of $p27^{Kip1}$ Protects hES Cells from Differentiation-Associated and Caspase 3-Dependent Apoptosis

  • Park, So-Hyun (Department of Pharmacy, College of Pharmacy, Hanyang University) ;
  • Kim, Min Kyoung (Drug Discovery Lab, Central Research Institute, ChoongWae Pharma Corp.) ;
  • Lee, Chul-Hoon (Department of Pharmacy, College of Pharmacy, Hanyang University)
  • Received : 2012.09.24
  • Accepted : 2012.10.06
  • Published : 2012.12.28

Abstract

Recently, it has been suggested that $p27^{Kip1}$, the cell cycle regulatory protein, plays a pivotal role in the progression of normal differentiation in murine embryonic stem (mES) cells. In the current study, we investigated the role of $p27^{Kip1}$ in the regulation of differentiation and apoptotic induction using Western blotting, quantitative real-time RT-PCR, and small interfering RNA (siRNA) assays and confocal laser scanning microscopic analysis of H9 human ES (hES) cells and H9-derived embryoid bodies (EBs) grown for 10 ($EB_{10}$) and 20 days ($EB_{20}$). Our results demonstrate that the proteins $p27^{Kip1}$ and cyclin D3 are strongly associated with cellular differentiation, and, for the first time, show that up-regulation of $p27^{Kip1}$ protects hES cells from inducing differentiation-associated and caspase 3-dependent apoptosis.

Keywords

References

  1. Bahrami, A. R., M. M. Matin, and P. W. Andrews. 2005. The CDK inhibitor p27 enhances neural differentiation in pluripotent NTERA2 human EC cells, but does not permit differentiation of 2102Ep nullipotent human EC cells. Mech. Dev. 122: 1034-1042. https://doi.org/10.1016/j.mod.2005.04.011
  2. Baldassarre, G., M. V. Barone, B. Belleti, C. Sandomenico, P. Bruni, S. Spiezia, et al. 1999. Key role of the cyclin-dependent kinase inhibitor p27kip1 for embryonal carcinoma cell survival and differentiation. Oncogene 18: 6241-6251. https://doi.org/10.1038/sj.onc.1203031
  3. Baldassarre, G., A. Boccia, P. Bruni, C. Sandomenico, M. V. Barone, S. Pepe, et al. 2000. Retinoic acid induces neuronal differentiation of embryonal carcinoma cells by reducing proteasome-dependent proteolysis of the cyclin-dependent inhibitor p27. Cell Growth Differ. 11: 517-526.
  4. Boonen, G. J. J. C., B. A. van Oirschot, A. van Diepen, W. J. M. Mackus, L. F. Verdonck, G. Rijksen, et al. 1999. Cyclin D3 regulates proliferation and apoptosis of leukemic T cell lines. J. Biol. Chem. 274: 34676-34682. https://doi.org/10.1074/jbc.274.49.34676
  5. Bryja, V., L. Cajanek, J. Pachernik, A. C. Hall, V. Horvath, P. Dvorak, and A. Hampl. 2005. Abnormal development of mouse embryoid bodies lacking $p27^{Kip}$ cell cycle regulator. Stem Cells 23: 965-974. https://doi.org/10.1634/stemcells.2004-0174
  6. Bryja, V., J. Pachernik, K. Soucek, V. Horvath, P. Dvorak, and A. Hampl. 2004. Increased apoptosis in differentiating p27-deficient embryonic stem cells. Cell. Mol. Life Sci. 61: 1384-1400. https://doi.org/10.1007/s00018-004-4081-4
  7. Constantinescu, D., H. L. Gray, P. J. Sammak, G. P. Schatten, and A. B. Csoka. 2006. Lamin A/C expression is a marker of mouse and human embryonic stem cell differentiation. Stem Cells 24: 177-185. https://doi.org/10.1634/stemcells.2004-0159
  8. Egozi, D., M. Shapira, G. Paor, O. Ben-Izhak, K. Skorecki, and D. D. Hershko. 2007. Regulation of the cell cycle inhibitor p27 and its ubiquitin ligase Skp2 in differentiation of human embryonic stem cells. FASEB J. 21: 2807-2817. https://doi.org/10.1096/fj.06-7758com
  9. Glozak, M. A. and M. B. Rogers. 2001. Retinoic acid- and bone morphogenetic protein 4-induced apoptosis in P19 embryonal carcinoma cells requires p27. Exp. Cell Res. 268: 128-138. https://doi.org/10.1006/excr.2001.5281
  10. Grana, X. and F. P. Reddy. 1995. Cell cycle control in mammalian cells: Role of cyclins, cyclin-dependent kinases (CDK), growth suppressor genes, and inhibitors (CKIs). Oncogene 11: 211-219.
  11. Hiromura, K., J. W. Pippin, M. L Fero, J. M. Roberts, and S. J. Shankland. 1999. Modulation of apoptosis by the cyclindependent kinase inhibitor p27Kip1. J. Clin. Invest. 103: 597-604. https://doi.org/10.1172/JCI5461
  12. Joza, N., S. A. Susin, E. Daugas, W. L. Stanford, S. K. Cho, C. Y. J. Li, et al. 2001. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410: 549-554. https://doi.org/10.1038/35069004
  13. Kenneth, J. L. and D. S. Thomas. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}C_T}$ method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262
  14. Lloyd, R. V., L. A. Erickson, L. Jin, E. Kulig, X. Qian, J. C. Cheville, et al. 1998. p27kip1: A multifunctional cyclindependent kinase inhibitor with prognostic significance in human cancers. Am. J. Pathol. 154: 313-323.
  15. Morgan, D. O. 1995. Principles of Cdk regulation. Nature 374: 131-134. https://doi.org/10.1038/374131a0
  16. Philipp-Staheli, J., S. R. Payne, and C. J. Kemp. 2001. p27Kip1: Regulation and function of a haplo-insufficient tumor suppressor and its misregulation in cancer. Exp. Cell Res. 264: 148-168. https://doi.org/10.1006/excr.2000.5143
  17. Reed, S. I., E. Bailly, V. Dulic, L. Hengst, D. Resnitzky, and J. Slingerland. 1994. G1 control in mammalian cells. J. Cell Sci. Suppl. 18: 69-73.
  18. Savatier, P., H. Lapillonne, L. A. van Grunsven, B. B. Rudkin, and J. Samarut. 1995. Withdrawal of differentiation inhibitory activity/leukemia inhibitory factor up-regulates D-type cyclins and cyclin-dependent kinase inhibitors in mouse embryonic stem cells. Oncogene 12: 309-322.
  19. Sherr, C. J. 1993. Mammalian G1 cyclins. Cell 48: 981-983.
  20. Sherr, C. J. and J. M. Roberts, 1995. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 9: 1149-1163. https://doi.org/10.1101/gad.9.10.1149