References
- Bhadra, B., A. K. Nanda, and R. Chakraborty. 2006. Inducible nickel resistance in a river isolate of India phylogenetically ascertained as a novel strain of Acinetobacter junii. World J. Microbiol. Biotechnol. 22: 225-232. https://doi.org/10.1007/s11274-005-9026-z
- Cardenas-Gonzalez, J. F. and I. Acosta-Rodriguez. 2010. Hexavalent chromium removal by a Paecilomyces sp. fungal strain isolated from environment. Bioinorg. Chem. Appl. 22: 9-16.
- Cheung, K. H. and J.-D. Gu. 2007. Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: A review. Int. Biodeterior. Biodegrad. 59: 8-15. https://doi.org/10.1016/j.ibiod.2006.05.002
- Colin, V. L., L. B. Villegas, and C. M. Abate. 2012. Indigenous microorganisms as potential bioremediators for environments contaminated with heavy metals. Int. Biodeterior. Biodegrad. 69: 28-37.
- Da'na, E. and A. Sayari. 2010. Optimization of copper removal efficiency by adsorption on amine-modified SBA-15: Experimental design methodology. Chem. Eng. J. 167: 91-98.
- Dermou, E. and D. V. Vayenas. 2008. Biological Cr(VI) reduction in a trickling filter under continuous operation with recirculation. J. Chem. Technol. Biotechnol. 83: 871-877. https://doi.org/10.1002/jctb.1882
- Dhakate, R., V. S. Singh, and G. K. Hodlur. 2008. Impact assessment of chromite mining on groundwater through simulation modeling study in Sukinda chromite mining area, Orissa, India. J. Hazard. Mater. 160: 535-547. https://doi.org/10.1016/j.jhazmat.2008.03.053
- Derringer, G. and R. Suich. 1980. Simultaneous optimization of several response variables. J. Qual. Technol. 12: 214-221.
- Elangovan, R. and L. Philip. 2009. Performance evaluation of various bioreactors for the removal of Cr(VI) and organic matter from industrial effluent. Biochem. Eng. J. 44: 174-186. https://doi.org/10.1016/j.bej.2008.11.014
- Goyal, N., S. C. Jain, and U. C. Banerjee. 2003. Comparative studies on the microbial adsorption of heavy metals. Adv. Environ. Res. 7: 311-319. https://doi.org/10.1016/S1093-0191(02)00004-7
- He, Z., F. Gao, T. Sha, Y. Hu, and C. He. 2009. Isolation and characterization of a Cr(VI)-reduction Ochrobactrum sp. strain CSCr-3 from chromium landfill. J. Hazard. Mater. 163: 869-873. https://doi.org/10.1016/j.jhazmat.2008.07.041
- Hrenovi , J., Y. Orhan, H. Buyukgungor, and M. Horvati ek. 2007. Influence of ammonium, nitrate and nitrite on the performance of the pure culture of Acinetobacter junii. Biologia 62: 517-522. https://doi.org/10.2478/s11756-007-0102-8
- Jeyasingh, J. and L. Philip. 2005. Bioremediation of chromium contaminated soil: Optimization of operating parameters under laboratory conditions. J. Hazard. Mater. 118: 113-120. https://doi.org/10.1016/j.jhazmat.2004.10.003
- Kilic, N. K. and G. Donmez. 2007. Hexavalent chromium bioaccumulation by Micrococcus sp. isolated from tannery wastewaters. Fresen. Environ. Bull. 16: 1571-1577.
- Lee, S. E., J. U. Lee, H. T. Chon, and J. S. Lee. 2008. Microbiological reduction of hexavalent chromium by indigenous chromium-resistant bacteria in sand column experiments. Environ. Geochem. Health 30: 141-145. https://doi.org/10.1007/s10653-008-9132-6
- Leles, D. M. A., D. A. Lemos, U. C. Filho, L. L. Romanielo, M. M. de Resende, and V. L. Cardoso. 2012. Evaluation of the bioremoval of Cr(VI) and TOC in biofilters under continuous operation using response surface methodology. Biodegradation 23: 441-454. https://doi.org/10.1007/s10532-011-9523-8
- Mariano-da-Silva, S., S. L. de Oliveira, C. A. O. Leite, R. S. do Prado, F. P. de Faria, R. C. N. Oliveira, and F. M. S. Marianoda- Silva. 2009. Effect of pH, dextrose and yeast extract on cadmium toxicity on Saccharomyces cerevisiae PE-2. Cienc. Tecnol. Alimen. 29: 295-299. https://doi.org/10.1590/S0101-20612009000200009
- Montgomery, D. C. 2006. Designed experiments in process improvement. Qual. Reliab. Eng. Int. 22: 863-864. https://doi.org/10.1002/qre.847
- Montgomery, D. C. 2008. Design and Analysis of Experiments. John Wiley and Sons, New York.
- Montgomery, D. C., C. M. Borror, and J. D. Stanley. 1998. Some cautions in the use of Plackett-Burman designs. Qual. Eng. 10: 371-381.
- Myers, R. H., D. C. Montgomery, G. G. Vining, C. M. Borror, and S. M. Kowalski. 2004. Response surface methodology: A retrospective and literature survey. J. Qual. Technol. 36: 53-78.
- Orozco, A. M. F., E. M. Contreras, and N. E. Zaritzky. 2010. Cr(VI) reduction capacity of activated sludge as affected by nitrogen and carbon sources, microbial acclimation and cell multiplication. J. Hazard. Mater. 176: 657-665. https://doi.org/10.1016/j.jhazmat.2009.11.082
- Orozco, A. M. F., E. M. Contreras, and N. E. Zaritzky. 2011. Effects of combining biological treatment and activated carbon on hexavalent chromium reduction. Bioresour. Technol. 102: 2495-2502. https://doi.org/10.1016/j.biortech.2010.11.041
- Plackett, R. L. and J. P. Burman. 1944. The design of optimum multifactorial experiments. Biometrica 33: 305-325.
- Prasenjit, B. and S. Sumathi. 2005. Uptake of chromium by Aspergillus foetidus. J. Mater. Cycles Waste Manage. 7: 88-92. https://doi.org/10.1007/s10163-005-0131-8
- Quintelas, C., B. Fonseca, B. Silva, H. Figueiredo, and T. Tavares. 2009. Treatment of chromium(VI) solutions in a pilotscale bioreactor through a biofilm of Arthrobacter viscosus supported on GAC. Bioresour. Technol. 100: 220-226. https://doi.org/10.1016/j.biortech.2008.05.010
- Samuel, J., M. L. Paul, M. Pulimi, M. J. Nirmala, N. Chandrasekaran, and A. Mukherjee. 2012. Hexavalent chromium bioremoval through adaptation and consortia development from Sukinda chromite mine isolates. Ind. Eng. Chem. Res. 51: 3740-3749. https://doi.org/10.1021/ie201796s
- Shakoori, A. R., M. Makhdoom, and R. U. Haq. 2000. Hexavalent chromium reduction by a dichromate-resistant grampositive bacterium isolated from effluents of tanneries. Appl. Microbiol. Biotechnol. 53: 348-351. https://doi.org/10.1007/s002530050033
- Somasundaram, V., L. Philip, and S. M. Bhallamudi. 2011. Laboratory scale column studies on transport and biotransformation of Cr(VI) through porous media in presence of CRB, SRB and IRB. Chem. Eng. J. 171: 572-581. https://doi.org/10.1016/j.cej.2011.04.032
- Srivastava, S. and I. S. Thakur. 2006. Isolation and process parameter optimization of Aspergillus sp. for removal of chromium from tannery effluent. Bioresour. Technol. 97: 1167-1173. https://doi.org/10.1016/j.biortech.2005.05.012
- Srivastava, S. and I. S. Thakur. 2007. Evaluation of biosorption potency of Acinetobacter sp. for removal of hexavalent chromium from tannery effluent. Biodegradation 18: 637-646. https://doi.org/10.1007/s10532-006-9096-0
- Tiwary, R., R. Dhakate, V. Ananda Rao, and V. Singh. 2005. Assessment and prediction of contaminant migration in ground water from chromite waste dump. Environ. Geol. 48: 420-429. https://doi.org/10.1007/s00254-005-1233-2
- Villegas, L. B., P. M. Fernández, M. J. Amoroso, and L. I. C. De Figueroa. 2008. Chromate removal by yeasts isolated from sediments of a tanning factory and a mine site in Argentina. BioMetals 21: 591-600. https://doi.org/10.1007/s10534-008-9145-8
- Xu, L., M. Luo, W. Li, X. Wei, K. Xie, L. Liu, et al. 2011. Reduction of hexavalent chromium by Pannonibacter phragmitetus LSSE-09 stimulated with external electron donors under alkaline conditions. J. Hazard. Mater. 185: 1169-1176. https://doi.org/10.1016/j.jhazmat.2010.10.028
Cited by
- Bacterial mechanisms for Cr(VI) resistance and reduction: an overview and recent advances vol.59, pp.4, 2012, https://doi.org/10.1007/s12223-014-0304-8
- Hexavalent chromium reduction by chromate-resistant haloalkaliphilic Halomonas sp. M-Cr newly isolated from tannery effluent vol.28, pp.4, 2014, https://doi.org/10.1080/13102818.2014.937092
- Optimization of chromium and tannic acid bioremediation by Aspergillus niveus using Plackett–Burman design and response surface methodology vol.7, pp.1, 2012, https://doi.org/10.1186/s13568-017-0504-0
- Chromate detoxification potential of Staphylococcus sp. isolates from an estuary vol.28, pp.4, 2012, https://doi.org/10.1007/s10646-019-02038-w
- Operational Characteristics of Immobilized Ochrobactrum sp. CUST210-1 Biosystem and Immobilized Chromate Reductase Biosystem in Continuously Treating Actual Chromium-Containing Wastewater vol.10, pp.17, 2012, https://doi.org/10.3390/app10175934
- Microbial Mechanisms for Remediation of Hexavalent Chromium and their Large-Scale Applications; Current Research and Future Directions vol.15, pp.1, 2021, https://doi.org/10.22207/jpam.15.1.32
- Enhanced biostimulation coupled with a dynamic groundwater recirculation system for Cr(VI) removal from groundwater: A field-scale study vol.772, pp.None, 2012, https://doi.org/10.1016/j.scitotenv.2021.145495