DOI QR코드

DOI QR Code

Bioconversion of Piceid to Piceid Glucoside Using Amylosucrase from Alteromonas macleodii Deep Ecotype

  • Park, Hyunsu (Department of Microbiology, College of Natural Sciences, Pusan National University) ;
  • Kim, Jieun (Department of Microbiology, College of Natural Sciences, Pusan National University) ;
  • Park, Ji-Hae (Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University) ;
  • Baek, Nam-In (Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University) ;
  • Park, Cheon-Seok (Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University) ;
  • Lee, Hee-Seob (Department of Food and Nutrition, Pusan National University) ;
  • Cha, Jaeho (Department of Microbiology, College of Natural Sciences, Pusan National University)
  • 투고 : 2012.08.09
  • 심사 : 2012.08.13
  • 발행 : 2012.12.28

초록

Resveratrol, or its glycoside form piceid, is a dietary antioxidant polyphenolic compound, found in grapes and red wine that has been shown to have protective effects against cardiovascular disease. However, very low water solubility of the compound may limit its application in the food and pharmaceutical industries. The amylosucrase (AMAS) of Alteromonas macleodii Deep ecotype was expressed in Escherichia coli and showed high glycosyltransferase activity to produce the glucosyl piceid when piceid was used as an acceptor. The conversion yield of piceid glucoside was 35.2%. Biotransformation using culture of the E. coli harboring the amas gene increased the yield up to 70.8%. The transfer product was purified by reverse phase chromatography and recycling preparative HPLC, and the molecular structure of the piceid glucoside was determined using NMR spectroscopy. The piceid glucoside was identified as glucosyl-${\alpha}$-($1{\rightarrow}4$)-piceid. The solubility of glucosyl piceid was 5.26 and 1.14 times higher than those of resveratrol and piceid, respectively. It is anticipated that dietary intake of this compound is more effective by enhancing the bioavailability of resveratrol in the human body because of its hydrophilic properties in the intestinal fluid.

키워드

참고문헌

  1. Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  2. Fan, E., L. Zhang, S. Jiang, and Y. Bai. 2007. Beneficial effects of resveratrol on atherosclerosis. J. Med. Food 11: 610-614.
  3. Gao, C., P. Mayon, D. A. MacManus, and E. N. Vulfson. 2000. Novel enzymatic approach to the synthesis of flavonoid glycosides and their esters. Biotechnol. Bioeng. 71: 235-243. https://doi.org/10.1002/1097-0290(2000)71:3<235::AID-BIT1013>3.0.CO;2-M
  4. Gu, L. 2001. Studies of isoflavones and soyasaponins in soy. Ph.D. dissertation, Wuxi University of Light Industry, Wuxi, China.
  5. Ha, S. J., D. H. Seo, J. H. Jung, J. Cha, T. J. Kim, Y. W. Kim, et al. 2009. Molecular cloning and functional expression of a new amylosucrase from Alteromonas macleodii. Biosci. Biotechnol. Biochem. 73: 1505-1512. https://doi.org/10.1271/bbb.80891
  6. Henry, C., X. Vitrac, A. Decendit, R. Ennamany, S. Krisa, and J. M. Merillon. 2005. Cellular uptake and efflux of trans-piceid and its aglycone trans-resveratrol on the apical membrane of human intestinal Caco-2 cells. J. Agric. Food Chem. 53: 798-803. https://doi.org/10.1021/jf048909e
  7. Jiang, J. R., S. Yuan, J. F. Ding, S. C. Zhu, H. D. Xu, T. Chen, et al. 2008. Conversion of puerarin into its 7-O-glycoside derivatives by Microbacterium oxydans (CGMCC 1788) to improve its water solubility and pharmacokinetic properties. Appl. Microbiol. Biotechnol. 81: 647-657. https://doi.org/10.1007/s00253-008-1683-z
  8. Jung, J. H., D. H. Seo, S. J. Ha, M. C. Song, J. Cha, S. H. Yoo, et al. 2009. Enzymatic synthesis of salicin glycosides through transglycosylation catalyzed by amylosucrases from Deinococcus geothermalis and Neisseria polysaccharea. Carbohydr. Res. 344: 1612-1619. https://doi.org/10.1016/j.carres.2009.04.019
  9. Kometani, T., T. Nishimura, T. Nakae, H. Takii, and S. Okada. 1996. Synthesis of neohesperidin glycosides and naringin glycosides by cyclodextrin glucanotransferase from an alkalophilic Bacillus species. Biosci. Biotechnol. Biochem. 60: 645-649. https://doi.org/10.1271/bbb.60.645
  10. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  11. Li, D., S. H. Park, J. H. Shim, H. S. Lee, S. Y. Tang, C. S. Park, et al. 2004. In vitro enzymatic modification of puerarin to puerarin glycosides by maltogenic amylase. Carbohydr. Res. 339: 2789-2797. https://doi.org/10.1016/j.carres.2004.09.017
  12. Moon, Y. H., S. H. Nam, J. Kang, Y. M. Kim, J. H. Lee, H. K. Kang, et al. 2007. Enzymatic synthesis and characterization of arbutin glucosides using glucansucrase from Leuconostoc mesenteroides B-1299CB. Appl. Microbiol. Biotechnol. 77: 559-567. https://doi.org/10.1007/s00253-007-1202-7
  13. Murota, K., N. Matsuda, Y. Kashino, Y. Fujikura, T. Nakamura, Y. Kato, et al. 2010. ${\alpha}$-Oligoglucoylation of a sugar moiety enhances the bioavailability of quercetin glucosides in humans. Arch. Biochem. Biophys. 501: 91-97. https://doi.org/10.1016/j.abb.2010.06.036
  14. Park, H., J. Kim, K. H. Choi, S. Hwang, S. J. Yang, N. I. Baek, and J. Cha. 2012. Enzymatic synthesis of piceid glucosides using maltosyltransferase from Caldicellulosiruptor bescii DSM 6725. J. Agric. Food Chem. 60: 8183-8189. https://doi.org/10.1021/jf302127a
  15. Romero-Perez, A. I., M. Ibern-Gomez, R. M. Lamuela- Raventos, and M. C. de la Torre-Boronat. 1999. Piceid, the major resveratrol derivative in grape juices. J. Agric. Food Chem. 47: 1533-1536. https://doi.org/10.1021/jf981024g
  16. de Roode, B. M., M. C. Franssen, A. van der Padt, and R. M. Boom. 2003. Perspectives for the industrial enzymatic production of glycosides. Biotechnol. Prog. 19: 1391-1402. https://doi.org/10.1021/bp030038q
  17. Seo, D. H., J. H. Jung, S. J. Ha, M. C. Song, J. Cha, S. H. Yoo, et al. 2009. Highly selective biotransformation of arbutin to arbutin-${\alpha}$-glucoside using amylosucrase from Deinococcus geothermalis DSM 11300. J. Mol. Catal. B Enzym. 60: 113-118. https://doi.org/10.1016/j.molcatb.2009.04.006
  18. Walle, T., F. Hsieh, M. H. DeLegge, J. E. Oatis Jr., and U. K. Walle. 2004. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos. 32: 1377-1382. https://doi.org/10.1124/dmd.104.000885
  19. Walle, T. 2011. Bioavailability of resveratrol. Ann. N. Y. Acad. Sci. 1215: 9-15. https://doi.org/10.1111/j.1749-6632.2010.05842.x
  20. Yu, L., F. Gao, L. Yang, L. Xu, Z. Wang, and H. Ye. 2012. Biotransformation of puerarin into puerarin-6''-O-phosphate by Bacillus cereus. J. Ind. Microbiol. Biotechnol. 39: 299-305. https://doi.org/10.1007/s10295-011-1031-7

피인용 문헌

  1. Recent biotechnological progress in enzymatic synthesis of glycosides vol.40, pp.12, 2012, https://doi.org/10.1007/s10295-013-1332-0
  2. Synthesis of glycosides of resveratrol, pterostilbene, and piceatannol, and their anti-oxidant, anti-allergic, and neuroprotective activities vol.78, pp.7, 2012, https://doi.org/10.1080/09168451.2014.921551
  3. Flavonoid glucosylation by non-Leloir glycosyltransferases: formation of multiple derivatives of 3,5,7,3′,4′-pentahydroxyflavane stereoisomers vol.99, pp.22, 2012, https://doi.org/10.1007/s00253-015-6760-5
  4. Creating a Water‐Soluble Resveratrol‐Based Antioxidant by Site‐Selective Enzymatic Glucosylation vol.16, pp.13, 2012, https://doi.org/10.1002/cbic.201500284
  5. GH13 amylosucrases and GH70 branching sucrases, atypical enzymes in their respective families vol.73, pp.14, 2016, https://doi.org/10.1007/s00018-016-2244-8
  6. Synthesis of Aesculetin and Aesculin Glycosides Using Engineered Escherichia coli Expressing Neisseria polysaccharea Amylosucrase vol.28, pp.4, 2012, https://doi.org/10.4014/jmb.1711.11055
  7. Enzymatic modification of daidzin using heterologously expressed amylosucrase in Bacillus subtilis vol.28, pp.1, 2012, https://doi.org/10.1007/s10068-018-0453-7
  8. Cascade biocatalysis systems for bioactive naringenin glucosides and quercetin rhamnoside production from sucrose vol.103, pp.19, 2012, https://doi.org/10.1007/s00253-019-10060-5
  9. Enrichment of Polyglucosylated Isoflavones from Soybean Isoflavone Aglycones Using Optimized Amylosucrase Transglycosylation vol.25, pp.1, 2012, https://doi.org/10.3390/molecules25010181