DOI QR코드

DOI QR Code

Glutathione Reductase from Oryza sativa Increases Acquired Tolerance to Abiotic Stresses in a Genetically Modified Saccharomyces cerevisiae Strain

  • Kim, Il-Sup (Advanced Bio-resource Research Center, Kyungpook National University) ;
  • Kim, Young-Saeng (Advanced Bio-resource Research Center, Kyungpook National University) ;
  • Yoon, Ho-Sung (Advanced Bio-resource Research Center, Kyungpook National University)
  • Received : 2012.02.15
  • Accepted : 2012.06.27
  • Published : 2012.11.28

Abstract

Glutathione reductase (GR, E.C. 1.6.4.2) is an important enzyme that reduces glutathione disulfide (GSSG) to a sulfydryl form (GSH) in the presence of an NADPH-dependent system. This is a critical antioxidant mechanism. Owing to the significance of GR, this enzyme has been examined in a number of animals, plants, and microbes. We performed a study to evaluate the molecular properties of GR (OsGR) from rice (Oryza sativa). To determine whether heterologous expression of OsGR can reduce the deleterious effects of unfavorable abiotic conditions, we constructed a transgenic Saccharomyces cerevisiae strain expressing the GR gene cloned into the yeast expression vector p426GPD. OsGR expression was confirmed by a semiquantitative reverse transcriptase polymerase chain reaction (semiquantitative RT-PCR) assay, Western-blotting, and a test for enzyme activity. OsGR expression increased the ability of the yeast cells to adapt and recover from $H_2O_2$-induced oxidative stress and various stimuli including heat shock and exposure to menadione, heavy metals (iron, zinc, copper, and cadmium), sodium dodecyl sulfate (SDS), ethanol, and sulfuric acid. However, augmented OsGR expression did not affect the yeast fermentation capacity owing to reduction of OsGR by multiple factors produced during the fermentation process. These results suggest that ectopic OsGR expression conferred acquired tolerance by improving cellular homeostasis and resistance against different stresses in the genetically modified yeast strain, but did not affect fermentation ability.

Keywords

References

  1. Auesukaree, C., A. Damnernsawad, M. Kruatrachue, P. Pokethitiyook, C. Boonchird, Y. Kaneko, and S. Harashima. 2009. Genome-wide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae. J. Appl. Genet. 50: 301-310. https://doi.org/10.1007/BF03195688
  2. Cardoso, L. A., S. T. Ferreira, and M. Hermes-Lima. 2008. Reductive inactivation of yeast glutathione reductase by Fe(II) and NADPH. Comp. Biochem. Physiol. Mol. Integr. Physiol. 151: 313-321. https://doi.org/10.1016/j.cbpa.2007.03.025
  3. Carmel-Harel, O. and G. Storz. 2000. Roles of the glutathioneand thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu. Rev. Microbiol. 54: 439-461. https://doi.org/10.1146/annurev.micro.54.1.439
  4. Causton, H. C., B. Ren, S. S. Koh, C. T. Harbiso, E. Kanin, E. G. Jennings, et al. 2001. Remodeling of yeast genome expression in response to environmental changes. Mol. Biol. Cell 12: 323-337. https://doi.org/10.1091/mbc.12.2.323
  5. Chen, Y. P., L. P. Xing, G. J. Wu, H. Z. Wang, X. E. Wang, A. Z. Cao, and P. D. Chen. 2007. Plastidial glutathione reductase from Haynaldia villosa is an enhancer of powdery mildew resistance in wheat (Triticum aestivum). Plant Cell Physiol. 48: 1702-1712. https://doi.org/10.1093/pcp/pcm142
  6. Costa, V. and P. Moradas-Ferreira. 2001. Oxidative stress and signal transduction in Saccharomyces cerevisiae: Insights into ageing, apoptosis and diseases. Mol. Aspects Med. 22: 217-246. https://doi.org/10.1016/S0098-2997(01)00012-7
  7. Foyer, C. H. and B. Halliwell. 1976. The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta 133: 21-25. https://doi.org/10.1007/BF00386001
  8. Gietz, R. D. and R. A. Woods. 2001. Genetic transformation of yeast. Biotechniques 30: 816-820.
  9. Howlett, N. G. and S. V. Avery. 1997. Induction of lipid peroxidation during heavy metal stress in Saccharomyces cerevisiae and influence of plasma membrane fatty acid unsaturation. Appl. Environ. Microbiol. 63: 2971-2976.
  10. Jamieson, D. J. 1998. Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 14: 1511-1527. https://doi.org/10.1002/(SICI)1097-0061(199812)14:16<1511::AID-YEA356>3.0.CO;2-S
  11. Kim, S. J., H. J. Jung, D. H. Hyun, E. H. Park, Y. M. Kim, and C. J. Lim. 2010. Glutathione reductase plays an anti-apoptotic role against oxidative stress in human hepatoma cells. Biochimie 92: 927-932. https://doi.org/10.1016/j.biochi.2010.03.007
  12. Koerkamp, M. G., M. Rep, H. J. Bussemaker, G. P. Hardy, A. Mul, K. Piekarska, et al. 2002. Dissection of transient oxidative stress response in Saccharomyces cerevisiae by using DNA microarrays. Mol. Biol. Cell 13: 2783-2794. https://doi.org/10.1091/mbc.E02-02-0075
  13. Lewinska, A. and G. Bartosz. 2007. Protection of yeast lacking the Ure2 protein against the toxicity of heavy metals and hydroperoxides by antioxidants. Free Radic. Res. 41: 580-590. https://doi.org/10.1080/10715760701209904
  14. Liu, J., Y. Zhang, D. Huang, and G. Song. 2005. Cadmium induced MTs synthesis via oxidative stress in yeast Saccharomyces cerevisiae. Mol. Cell. Biochem. 280: 139-145. https://doi.org/10.1007/s11010-005-8541-4
  15. Lopez-Mirabal, H. R. and J. R. Winther. 2008. Redox characteristics of the eukaryotic cytosol. Biochim. Biophys. Acta 1783: 629-640. https://doi.org/10.1016/j.bbamcr.2007.10.013
  16. Mishra, Y., N. Chaurasia, and L. C. Rai. 2009. AhpC (alkyl hydroperoxide reductase) from Anabaena sp. PCC 7120 protects Escherichia coli from multiple abiotic stresses. Biochem. Biophys. Res. Commun. 381: 606-611. https://doi.org/10.1016/j.bbrc.2009.02.100
  17. Mockett, R. J., R. S. Sohal, and W. C. Orr. 1999. Overexpression of glutathione reductase extends survival in transgenic Drosophila melanogaster under hyperoxia but not normoxia. FASEB J. 13: 1733-1742.
  18. Narayan, O. P., N. Kumari, and L. C. Rai. 2010. Heterologous expression of Anabaena PCC 7120 all3940 (a Dps family gene) protects Escherichia coli from nutrient limitation and abiotic stresses. Biochem. Biophys. Res. Commun. 394: 163-169. https://doi.org/10.1016/j.bbrc.2010.02.135
  19. Outten, C. E. and V. C. Culotta. 2004. Alternative start sites in the Saccharomyces cerevisiae GLR1 gene are responsible for mitochondrial and cytosolic isoforms of glutathione reductase. J. Biol. Chem. 279: 7785-7791.
  20. Pereira, M. D., E. C. Eleutherio, and A. D. Panek. 2001. Acquisition of tolerance against oxidative damage in Saccharomyces cerevisiae. BMC Microbiol. 1: 11. https://doi.org/10.1186/1471-2180-1-11
  21. Roberts, R. J., M. Belfort, T. Bestor, A. S. Bhagwat, T. A. Bickle, J. Bitinaite, et al. 2003. A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res. 31: 1805-1812. https://doi.org/10.1093/nar/gkg274
  22. Schmidt, K., D. M. Wolfe, S. Stiller, and D. A. Pearce. 2009. $Cd^{2+}$, $Mn^{2+}$, $Ni^{2+}$ and $Se^{2+}$ toxicity to Saccharomyces cerevisiae lacking YPK9p the orthologue of human ATP13A2. Biochem. Biophys. Res. Commun. 383: 198-202. https://doi.org/10.1016/j.bbrc.2009.03.151
  23. Schmitt, M. E., T. A. Brown, and B. L. Trumpower. 1990. A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res. 18: 3091-3092. https://doi.org/10.1093/nar/18.10.3091
  24. Sebollela, A., P. R. Louzada, M. Sola-Penna, V. Sarone- Williams, T. Coelho-Sampaio, and S. T. Ferreira. 2004. Inhibition of yeast glutathione reductase by trehalose: Possible implications in yeast survival and recovery from stress. Int. J. Biochem. Cell Biol. 36: 900-908. https://doi.org/10.1016/j.biocel.2003.10.006
  25. Seo, J. S., K. W. Lee, J. S. Rhee, D. S. Hwang, Y. M. Lee, H. G. Park, et al. 2006 Environmental stressors (salinity, heavy metals, $H_2O_2$) modulate expression of glutathione reductase (GR) gene from the intertidal copepod Tigriopus japonicus. Aquat. Toxicol. 80: 281-289. https://doi.org/10.1016/j.aquatox.2006.09.005
  26. Shu, D. F., L. Y. Wang, M. Duan, Y. S. Deng, and Q. W. Meng. 2011. Antisense-mediated depletion of tomato chloroplast glutathione reductase enhances susceptibility to chilling stress. Plant Physiol. Biochem. 49: 1228-1237. https://doi.org/10.1016/j.plaphy.2011.04.005
  27. Tan, S. X., D. Greetham, S. Raeth, C. M. Grant, I. W. Dawes, and G. G. Perrone. 2010. The thioredoxin-thioredoxin reductase system can function in vivo as an alternative system to reduce oxidized glutathione in Saccharomyces cerevisiae. J. Biol. Chem. 285: 6118-6126. https://doi.org/10.1074/jbc.M109.062844
  28. Tandogan, B. and N. N. Ulusu. 2007. The inhibition kinetics of yeast glutathione reductase by some metal ions. J. Enzyme Inhib. Med. Chem. 22: 489-495. https://doi.org/10.1080/14756360601162147
  29. Tandogan, B. and N. N. Ulusu. 2010. Comparative in vitro effects of some metal ions on bovine kidney cortex glutathione reductase. Prep. Biochem. Biotechnol. 40: 405-411. https://doi.org/10.1080/10826068.2010.525400
  30. Tandogan, B. and N. N. Ulusu. 2010. Inhibition of purified bovine liver glutathione reductase with some metal ions. J. Enzyme Inhib. Med. Chem. 25: 68-73. https://doi.org/10.3109/14756360903016512
  31. Tandogan, B. and N. N. Ulusu. 2010. Purification and kinetics of bovine kidney cortex glutathione reductase. Protein Pept. Lett. 17: 667-674. https://doi.org/10.2174/092986610791112684
  32. Ulusu, N. N. and B. Tandogan. 2007. Purification and kinetic properties of glutathione reductase from bovine liver. Mol. Cell. Biochem. 303: 45-51. https://doi.org/10.1007/s11010-007-9454-1
  33. Wenzel, T. J., A. W. Teunissen, and H. Y. de Steensma. 1995. PDA1 mRNA: A standard for quantitation of mRNA in Saccharomyces cerevisiae superior to ACT1 mRNA. Nucleic Acids Res. 23: 883-884. https://doi.org/10.1093/nar/23.5.883

Cited by

  1. Engineering glutathione biosynthesis of Saccharomyces cerevisiae increases robustness to inhibitors in pretreated lignocellulosic materials vol.12, pp.None, 2012, https://doi.org/10.1186/1475-2859-12-87
  2. Genome-wide analysis of glutathione reductase (GR) genes from rice and Arabidopsis vol.8, pp.2, 2012, https://doi.org/10.4161/psb.23021
  3. Copper-induced adaptation, oxidative stress and its tolerance in Aspergillus niger UCP1261 vol.18, pp.6, 2012, https://doi.org/10.1016/j.ejbt.2015.09.006
  4. Increased lignocellulosic inhibitor tolerance of Saccharomyces cerevisiae cell populations in early stationary phase vol.10, pp.None, 2012, https://doi.org/10.1186/s13068-017-0794-0
  5. Bioremediation and tolerance of zinc ions using Fusarium solani vol.6, pp.9, 2012, https://doi.org/10.1016/j.heliyon.2020.e05048