DOI QR코드

DOI QR Code

Fungal Diversity and Plant Growth Promotion of Endophytic Fungi from Six Halophytes in Suncheon Bay

  • You, Young-Hyun (Department of Life Sciences and Biotechnology, Kyungpook National University) ;
  • Yoon, Hyeokjun (Department of Life Sciences and Biotechnology, Kyungpook National University) ;
  • Kang, Sang-Mo (School of Applied Biosciences, Kyungpook National University) ;
  • Shin, Jae-Ho (School of Applied Biosciences, Kyungpook National University) ;
  • Choo, Yeon-Sik (Department of Biology, College of National Sciences, Kyungpook National University) ;
  • Lee, In-Jung (School of Applied Biosciences, Kyungpook National University) ;
  • Lee, Jin-Man (Department of Food Science and Technology, Hoseo University) ;
  • Kim, Jong-Guk (Department of Life Sciences and Biotechnology, Kyungpook National University)
  • Received : 2012.05.07
  • Accepted : 2012.06.23
  • Published : 2012.11.28

Abstract

Endophytic fungi were isolated from roots of six halophytes in Suncheon Bay. The endophytic fungi of 35 species isolated from halophytes were identified by internal transcribed spacer (ITS) containing the ITS1, 5.8s, and ITS2 regions. All fungal strains were analyzed to diversity at the genus level. Fungal culture filtrates (FCF) of endophytic fungi were treated to Waito-c rice (WR) seedling for plant growth-promoting verification. It was confirmed that fungal strain Sj-2-2 provided plant growth promotion (PGP) to WR seedling. Then, PGP of Suaeda japonica was confirmed by treating culture filtrate of Sj-2-2. As a result, it was verified that culture filtrate of Sj-2-2 had more advanced PGP than positive control when treated to S. japonica. The secondary metabolites involved in culture filtrate of Sj-2-2 were identified by HPLC and GC-MS SIM analysis. The presence of physiologically bioactive gibberellins (GAs) and other inactive GAs in culture filtrate of Sj-2-2 was detected. The molecular analysis of sequences of Sj-2-2 showed the similarity to Penicillium sp. of 99% homology. The PGP of Sj-2-2 as well as symbiosis between endophytic fungi and halophytes growing naturally in salt marsh was confirmed. Sj-2-2 was identified as a new fungal strain producing GAs by molecular analysis of sequences. Consequently, the Sj-2-2 fungal strain was named as Penicillium sp. Sj-2-2. In this study, the diversity of endophytic fungi isolated from roots of halophytes in salt marsh and the PGP of a new gibberellin-producing fungal strain were confirmed.

Keywords

References

  1. Basiacik, K. S. and N. Aksoz. 2004. Optimization of carbon nitrogen ratio for production of gibberellic acid by Pseudomonas sp. Pol. J. Microbiol. 53: 20-117.
  2. Bottini, R., F. Cassan, and P. Piccoli. 2004. Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl. Microbiol. Biotechnol. 65: 497-503.
  3. Choi, W. Y., S. O. Rim, J. H. Lee, J. M. Lee, I. J. Lee, K. J. Cho, et al. 2005. Isolation of gibberellins-producing fungi from the root of several Sesamum indicum plants. J. Microbiol. Biotechnol. 15: 22-28.
  4. Clay, K. and J. Holah. 1999. Fungal endophyte symbiosis and plant diversity in successional fields. Science 285: 1742-1744. https://doi.org/10.1126/science.285.5434.1742
  5. Gomes, N. C. M., D. F. R. Cleary, F. N. Pinto, C. Egas, A. Almeida, A. Cunha, et al. 2010. Taking root: Enduring effect of rhizosphere bacterial colonization in mangroves. PLoS ONE 5: e14065. https://doi.org/10.1371/journal.pone.0014065
  6. Hwang, J. S., Y. H. You, J. J. Bae, S. A. Khan, J. G. Kim, and Y. S. Choo. 2011. Effects of endophytic fungal secondary metabolites on the growth and physiological response of Carex kobomugi Ohwi. J. Coastal Res. 27: 544-548.
  7. Hasan, H. A. 2002. Gibberellin and auxin-production by plant root-fungi and their biosynthesis under salinity-calcium interaction. Acta Microbiol. Immunol. Hung. 49: 105-18. https://doi.org/10.1556/AMicr.49.2002.1.11
  8. Hamayun, M., S. A. Khan, M. A. Khan, A. L. Khan, S. M. Kang, S. K. Kim, et al. 2009. Gibberellin production by pure cultures of a new strain of Aspergillus fumigatus. World J. Microbiol. Biotechnol. 25: 1785-1792. https://doi.org/10.1007/s11274-009-0078-3
  9. Hedden, P. and A. l. Phillips. 2000. Gibberellin metabolism: New insights revealed by the genes. Trends Plant Sci. 5: 523-530. https://doi.org/10.1016/S1360-1385(00)01790-8
  10. Kawaide, H. 2006. Biochemical and molecular analysis of gibberellin biosynthesis in fungi. Biosci. Biotechnol. Biochem. 70: 583-590. https://doi.org/10.1271/bbb.70.583
  11. Kawaide, H. and T. Sassa. 1993. Accumulation of gibberellin $A_1$ and the metabolism of gibberellin $A_9$ to gibberellin $A_1$ in a Phaeosphaeria sp. L 487 culture. Biosci. Biotech. Biochem. 57: 1403-1405. https://doi.org/10.1271/bbb.57.1403
  12. Kawanabe, Y., H. Yamane, T. Murayama, N. Takahashi, and T. Nakamura. 1983. Identification of gibberellin $A_3$ in mycelia Neurospora crassa. Agric. Biol. Chem. 47: 1693-1694. https://doi.org/10.1271/bbb1961.47.1693
  13. Khan, A. L., M. Hamayun, N. Ahmad, J. Hussain, S. M. Kang, Y. H. Kim, et al. 2011. Salinity stress resistance offered by endophytic fungal interaction between Penicillium minioluteum LHL09 and Glycine max. L. J. Microbiol. Biotechnol. 21: 893-902. https://doi.org/10.4014/jmb.1103.03012
  14. Khan, A. L., M. Hamayun, S. M. Kang, Y. H. Kim, H. Y. Jung, J. H. Lee, and I. J. Lee. 2012 Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: An example of Paecilomyces formosus LHL10. BMC Microbiol. 12: 3. https://doi.org/10.1186/1471-2180-12-3
  15. Khan, S. A., M. Hamayun, H. J. Yoon, H. Y. Kim, S. J. Suh, S. K. Hwang, et al. 2008. Plant growth promotion and Penicillium citrinum. BMC Microbiol. 8: 231. https://doi.org/10.1186/1471-2180-8-231
  16. Khan, S. A., M. Hamayun, H. Y. Kim, H. J. Yoon, J. C. Seo, Y. S. Choo, et al. 2009. A new strain of Arthrinium phaeospermum isolated from Carex kobomugi Ohwi is capable of gibberellin production. Biotechnol. Lett. 31: 283-287. https://doi.org/10.1007/s10529-008-9862-7
  17. Kim, B. S., H. M. Oh, H. Kang, S. Park, and J. Chun. 2004. Remarkable bacterial diversity in the tidal flat sediment as revealed by 16S rDNA analysis. J. Microbiol. Biotechnol. 14: 205-211.
  18. Lee, I. J., K. Foster, and P. W. Morgan. 1998. Photoperiod control of gibberellin levels and flowering in sorghum. Plant Physiol. 116: 1003-1011. https://doi.org/10.1104/pp.116.3.1003
  19. Mander, L. N. 2003. Twenty years of gibberellin research. Nat. Prod. Rep. 20: 49-69. https://doi.org/10.1039/b007744p
  20. Mohamed, D. J. and J. B. Martiny. 2011. Patterns of fungal diversity and composition along a salinity gradient. ISME J. 5: 379-88. https://doi.org/10.1038/ismej.2010.137
  21. Ogas, J. 2000. Gibberellins. Curr. Biol. 10: R48-R48. https://doi.org/10.1016/S0960-9822(00)00292-X
  22. Pielou, E. C. 1975. Ecological Diversity. John Wiley, New York.
  23. Park, K. H. and H. K. Lee. 2006. Establishment of the wetland ecosystem information system based on Web-GIS in Gyeongnam region. J. Environ. Res. 6: 99-103.
  24. Rachev, R., V. Gancheva, S. Bojkova, C. Christov, and T. Zafirova. 1997. Gibberellin biosynthesis by Fusarium moniliforme in the presence of hydrophobic resin Amberlite XAD-2. Bulg. J. Plant Physiol. 12: 24-31.
  25. Yamaguchi, S. 2008. Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol. 59: 225-251. https://doi.org/10.1146/annurev.arplant.59.032607.092804
  26. Vazquez, M. M., S. Cesar, R. Azcon, and J. M. Barea. 2000. Interaction between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl. Soil Ecol. 15: 261-272. https://doi.org/10.1016/S0929-1393(00)00075-5
  27. Yamada, A., T. Ogura, Y. Degawa, and M. Ohmasa. 2001. Isolation of Tricholoma matsutake and T. bakamatsutake cultures from field-collected ectomycorrhizas. Mycoscience 42: 43-50. https://doi.org/10.1007/BF02463974

Cited by

  1. Characterization of Gibberellin Biosynthetic Gene Cluster from Fusarium proliferatum vol.23, pp.5, 2012, https://doi.org/10.4014/jmb.1212.12029
  2. Fungal growth promotor endophytes: a pragmatic approach towards sustainable food and agriculture vol.62, pp.2, 2012, https://doi.org/10.1007/s13199-014-0273-3
  3. 태안반도에 자생하는 염생식물의 뿌리로부터 분리한 내생 진균의 다양성 vol.42, pp.4, 2012, https://doi.org/10.4489/kjm.2014.42.4.269
  4. Impact of cover crop in pre-plant of apple orchards: relationship between crop health, root inhabiting fungi and rhizospheric bacteria vol.95, pp.5, 2012, https://doi.org/10.4141/cjps-2015-013
  5. Isolation and Identification of Fungal Endophytes from Grasses along the Oregon Coast vol.6, pp.19, 2012, https://doi.org/10.4236/ajps.2015.619313
  6. Endophytic fungi from the genus Colletotrichum are abundant in the Phaseolus vulgaris and have high genetic diversity vol.118, pp.2, 2012, https://doi.org/10.1111/jam.12696
  7. 동해안 자생식물로부터 분리된 내생균류의 식물생장촉진활성 및 동정 vol.51, pp.1, 2012, https://doi.org/10.7845/kjm.2015.5005
  8. 독도 해안식물로부터 분리된 호염성 세균들의 특성 및 계통학적 분석 vol.51, pp.1, 2012, https://doi.org/10.7845/kjm.2015.5008
  9. 담수에 자생하는 수생식물에서 분리된 내생균류의 지베렐린 생산과 동정 vol.43, pp.1, 2012, https://doi.org/10.4489/kjm.2015.43.1.71
  10. Aspergillus clavatus Y2H0002 as a New Endophytic Fungal Strain Producing Gibberellins Isolated from Nymphoides peltata in Fresh Water vol.43, pp.1, 2015, https://doi.org/10.5941/myco.2015.43.1.87
  11. 주남저수지와 동판저수지의 수생식물에서 분리된 내생균류의 비교 분석 vol.43, pp.2, 2012, https://doi.org/10.4489/kjm.2015.43.2.92
  12. Aspergillus flavus Y2H001의 식물생육촉진과 Gibberellin A3의 생산 vol.43, pp.3, 2015, https://doi.org/10.4489/kjm.2015.43.3.200
  13. Diversity of Endophytic Fungi Associated with the Roots of Four Aquatic Plants Inhabiting Two Wetlands in Korea vol.43, pp.3, 2012, https://doi.org/10.5941/myco.2015.43.3.231
  14. Evaluation of the functional roles of fungal endophytes of Phragmites australis from high saline and low saline habitats vol.18, pp.9, 2016, https://doi.org/10.1007/s10530-016-1160-z
  15. Impact of a natural soil salinity gradient on fungal endophytes in wild barley (Hordeum maritimum With.) vol.32, pp.11, 2012, https://doi.org/10.1007/s11274-016-2142-0
  16. 독도 번행초에서 분리된 내생균류의 배양적 특성과 Aspergillus tubingensis YH103의 gibberellin A7의 생산 vol.52, pp.1, 2016, https://doi.org/10.7845/kjm.2016.5071
  17. Endophytic Fusarium equiseti stimulates plant growth and reduces root rot disease of pea (Pisum sativum L.) caused by Fusarium avenaceum and Peyronellaea pinodella vol.148, pp.2, 2017, https://doi.org/10.1007/s10658-016-1086-4
  18. Mechanisms of action of plant growth promoting bacteria vol.33, pp.11, 2012, https://doi.org/10.1007/s11274-017-2364-9
  19. Diversity and distribution of the endophytic fungal community in eucalyptus leaves vol.11, pp.3, 2012, https://doi.org/10.5897/ajmr2016.8353
  20. Gibberellins of Endophytic and Saprotrophic Penicillium funiculosum Strains vol.79, pp.5, 2017, https://doi.org/10.15407/microbiolj79.05.057
  21. Investigation on biosuppression of Fusarium crown and root rot of tomato (Solanum lycopersicum L.) and growth promotion using fungi naturally associated to Solanum linnaeanum L. vol.12, pp.7, 2012, https://doi.org/10.5897/ajmr2017.8777
  22. Fungal endophytes from arid areas of Andalusia: high potential sources for antifungal and antitumoral agents vol.8, pp.None, 2012, https://doi.org/10.1038/s41598-018-28192-5
  23. Growth-promoting bioactivities of Bipolaris sp. CSL-1 isolated from Cannabis sativa suggest a distinctive role in modifying host plant phenotypic plasticity and functions vol.41, pp.5, 2012, https://doi.org/10.1007/s11738-019-2852-7
  24. Diversity of the endophytic filamentous fungal leaf community at different development stages of eucalyptus vol.30, pp.3, 2012, https://doi.org/10.1007/s11676-018-0610-0
  25. Current Perspectives on the Effects of Plant Growth-promoting Rhizobacteria vol.29, pp.11, 2019, https://doi.org/10.5352/jls.2019.29.11.1281
  26. A window into fungal endophytism in Salicornia europaea: deciphering fungal characteristics as plant growth promoting agents vol.445, pp.1, 2019, https://doi.org/10.1007/s11104-019-04315-3
  27. The Nexus Between Plant and Plant Microbiome: Revelation of the Networking Strategies vol.11, pp.None, 2012, https://doi.org/10.3389/fmicb.2020.548037
  28. Endophytic Penicillium species and their agricultural, biotechnological, and pharmaceutical applications vol.10, pp.3, 2012, https://doi.org/10.1007/s13205-020-2081-1
  29. Diversity and Plant Growth Promotion of Fungal Endophytes in Five Halophytes from the Buan Salt Marsh vol.31, pp.3, 2012, https://doi.org/10.4014/jmb.2012.12041
  30. Diversity and Plant Growth Promotion of Fungal Endophytes in Five Halophytes from the Buan Salt Marsh vol.31, pp.3, 2012, https://doi.org/10.4014/jmb.2012.12041
  31. Identification of New Sub-Fossil Diatoms Flora in the Sediments of Suncheonman Bay, Korea vol.9, pp.6, 2012, https://doi.org/10.3390/jmse9060591
  32. Fungal Biodiversity in Salt Marsh Ecosystems vol.7, pp.8, 2021, https://doi.org/10.3390/jof7080648