DOI QR코드

DOI QR Code

Cloning, Heterologous Expression, and Characterization of Novel Protease-Resistant ${\alpha}$-Galactosidase from New Sphingomonas Strain

  • Zhou, Junpei (Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University) ;
  • Dong, Yanyan (Medical School, Liaocheng Vocational and Technical College) ;
  • Li, Junjun (Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University) ;
  • Zhang, Rui (Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University) ;
  • Tang, Xianghua (Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University) ;
  • Mu, Yuelin (Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University) ;
  • Xu, Bo (Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University) ;
  • Wu, Qian (College of Life Sciences, Yunnan Normal University) ;
  • Huang, Zunxi (Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University)
  • Received : 2011.12.19
  • Accepted : 2012.06.29
  • Published : 2012.11.28

Abstract

The ${\alpha}$-galactosidase-coding gene agaAJB13 was cloned from Sphingomonas sp. JB13 showing 16S rDNA (1,343 bp) identities of ${\leq}97.2%$ with other identified Sphingomonas strains. agaAJB13 (2,217 bp; 64.9% GC content) encodes a 738-residue polypeptide (AgaAJB13) with a calculated mass of 82.3 kDa. AgaAJB13 showed the highest identity of 61.4% with the putative glycosyl hydrolase family 36 ${\alpha}$-galactosidase from Granulicella mallensis MP5ACTX8 (EFI56085). AgaAJB13 also showed <37% identities with reported protease-resistant or Sphingomonas ${\alpha}$-galactosidases. A sequence analysis revealed different catalytic motifs between reported Sphingomonas ${\alpha}$-galactosidases (KXD and RXXXD) and AgaAJB13 (KWD and SDXXDXXXR). Recombinant AgaAJB13 (rAgaAJB13) was expressed in Escherichia coli BL21 (DE3). The purified rAgaAJB13 was characterized using p-nitrophenyl-${\alpha}$-D-galactopyranoside as the substrate and showed an apparent optimum at pH 5.0 and $60^{\circ}C$ and strong resistance to trypsin and proteinase K digestion. Compared with reported proteaseresistant ${\alpha}$-galactosidases showing thermolability at $50^{\circ}C$ or $60^{\circ}C$ and specific activities of <71 U/mg with or without protease treatments, rAgaAJB13 exhibited a better thermal stability (half-life of >60 min at $60^{\circ}C$) and higher specific activities (225.0-256.5 U/mg). These sequence and enzymatic properties suggest AgaAJB13 is the first identified and characterized Sphingomonas ${\alpha}$-galactosidase, and shows novel protease resistance with a potential value for basic research and industrial applications.

Keywords

References

  1. Baik, S. H., K. Saito, A. Yokota, K. Asano, and F. Tomita. 2000. Molecular cloning and high-level expression in Escherichia coli of fungal ${\alpha}$-galactosidase from Absidia corymbifera IFO 8084. J. Biosci. Bioeng. 90: 168-173.
  2. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  3. Buja, L. M. 2009. Evaluation of recombinant ${\alpha}$-galactosidase A therapy for amelioration of the cardiovascular manifestations of Fabry disease: An important role for endomyocardial biopsy. Circulation 119: 2539-2541. https://doi.org/10.1161/CIRCULATIONAHA.109.861534
  4. Cantarel, B. L., P. M. Coutinho, C. Rancurel, T. Bernard, V. Lombard, and B. Henrissat. 2009. The Carbohydrate-Active EnZymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Res. 37: D233-D238. https://doi.org/10.1093/nar/gkn663
  5. Cao, Y., Y. Wang, H. Luo, P. Shi, K. Meng, Z. Zhou, et al. 2009. Molecular cloning and expression of a novel proteaseresistant GH-36 ${\alpha}$-galactosidase from Rhizopus sp. F78 ACCC 30795. J. Microbiol. Biotechnol. 19: 1295-1300.
  6. Cao, Y., Y. Wang, K. Meng, Y. Bai, P. Shi, H. Luo, et al. 2009. A novel protease-resistant ${\alpha}$-galactosidase with high hydrolytic activity from Gibberella sp. F75: Gene cloning, expression, and enzymatic characterization. Appl. Microbiol. Biotechnol. 83: 875-884. https://doi.org/10.1007/s00253-009-1939-2
  7. Cao, Y. N., T. Z. Yuan, P. J. Shi, H. Y. Luo, N. Li, K. Meng, et al. 2010. Properties of a novel ${\alpha}$-galactosidase from Streptomyces sp. S27 and its potential for soybean processing. Enzyme Microb. Technol. 47: 305-312. https://doi.org/10.1016/j.enzmictec.2010.09.007
  8. Clarke, E. J. and J. Wiseman. 2000. Developments in plant breeding for improved nutritional quality of soya beans II. Antinutritional factors. J. Agric. Sci. 134: 125-136. https://doi.org/10.1017/S0021859699007443
  9. Clarke, J. H., K. Davidson, J. E. Rixon, J. R. Halstead, M. P. Fransen, H. J. Gilbert, and G. P. Hazlewood. 2000. A comparison of enzyme-aided bleaching of softwood paper pulp using combinations of xylanase, mannanase and ${\alpha}$-galactosidase. Appl. Microbiol. Biotechnol. 53: 661-667. https://doi.org/10.1007/s002530000344
  10. Dhawan, S. and J. Kaur. 2007. Microbial mannanases: An overview of production and applications. Crit. Rev. Biotechnol. 27: 197-216. https://doi.org/10.1080/07388550701775919
  11. Farias, M. E., S. Revale, E. Mancini, O. Ordonez, A. Turjanski, N. Cortez, and M. P. Vazquez. 2011. Genome sequence of Sphingomonas sp. S17, isolated from an alkaline, hyperarsenic, and hypersaline volcano-associated lake at high altitude in the Argentinean Puna. J. Bacteriol. 193: 3686-3687. https://doi.org/10.1128/JB.05225-11
  12. Fialho, A. M., L. M. Moreira, A. T. Granja, A. O. Popescu, K. Hoffmann, and I. Sa-Correia. 2008. Occurrence, production, and applications of gellan: Current state and perspectives. Appl. Microbiol. Biotechnol. 79: 889-900. https://doi.org/10.1007/s00253-008-1496-0
  13. Ghazi, S., J. A. Rooke, and H. Galbraith. 2003. Improvement of the nutritive value of soybean meal by protease and ${\alpha}$-galactosidase treatment in broiler cockerels and broiler chicks. Br. Poultry Sci. 44: 410-418. https://doi.org/10.1080/00071660310001598283
  14. Graham, K. K., M. S. Kerley, J. D. Firman, and G. L. Allee. 2002. The effect of enzyme treatment of soybean meal on oligosaccharide disappearance and chick growth performance. Poultry Sci. 81: 1014-1019.
  15. Gupta, R., Q. K. Beg, and P. Lorenz. 2002. Bacterial alkaline proteases: Molecular approaches and industrial applications. Appl. Microbiol. Biotechnol. 59: 15-32. https://doi.org/10.1007/s00253-002-0975-y
  16. Jaswal, S. S., J. L. Sohl, J. H. Davis, and D. A. Agard. 2002. Energetic landscape of ${\alpha}$-lytic protease optimizes longevity through kinetic stability. Nature 415: 343-346. https://doi.org/10.1038/415343a
  17. Lane, D. J. 1991. 16S/23S rRNA sequencing, pp. 115-175. In E. Stackebrandt and M. Goodfellow (eds.). Nucleic Acid Techniques in Bacterial Systematics. Wiley, New York.
  18. Linden, J. C. 1982. Immobilized ${\alpha}$-D-galactosidase in the sugarbeet industry. Enzyme Microb. Technol. 4: 130-136. https://doi.org/10.1016/0141-0229(82)90103-X
  19. Lineweaver, H. and D. Burk. 1934. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56: 658-666. https://doi.org/10.1021/ja01318a036
  20. Liu, X. D., K. Meng, Y. R. Wang, P. J. Shi, T. Z. Yuan, P. L. Yang, et al. 2009. Gene cloning, expression and characterization of an ${\alpha}$-galactosidase from Pedobacter nyackensis MJ11 CGMCC 2503 with potential as an aquatic feed additive. World J. Microbiol. Biotechnol. 25: 1633-1642. https://doi.org/10.1007/s11274-009-0057-8
  21. Manning, M. and W. Colon. 2004. Structural basis of protein kinetic stability: Resistance to sodium dodecyl sulfate suggests a central role for rigidity and a bias toward ${\beta}$-sheet structure. Biochemistry 43: 11248-11254. https://doi.org/10.1021/bi0491898
  22. Mi, S., K. Meng, Y. Wang, Y. Bai, T. Yuan, H. Luo, and B. Yao. 2007. Molecular cloning and characterization of a novel ${\alpha}$- galactosidase gene from Penicillium sp. F63 CGMCC 1669 and expression in Pichia pastoris. Enzyme Microb. Technol. 40: 1373-1380. https://doi.org/10.1016/j.enzmictec.2006.10.017
  23. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  24. Miller, T. R., A. L. Delcher, S. L. Salzberg, E. Saunders, J. C. Detter, and R. U. Halden. 2010. Genome sequence of the dioxin-mineralizing bacterium Sphingomonas wittichii RW1. J. Bacteriol. 192: 6101-6102. https://doi.org/10.1128/JB.01030-10
  25. Trinder, P. 1969. Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. J. Clin. Pathol. 22: 158-161. https://doi.org/10.1136/jcp.22.2.158
  26. Whitcomb, D. C. and M. E. Lowe. 2007. Human pancreatic digestive enzymes. Digest. Dis. Sci. 52: 1-17. https://doi.org/10.1007/s10620-006-9589-z
  27. White, D. C., S. D. Sutton, and D. B. Ringelberg. 1996. The genus Sphingomonas: Physiology and ecology. Curr. Opin. Biotechnol. 7: 301-306. https://doi.org/10.1016/S0958-1669(96)80034-6
  28. Zhou, J. P., H. Q. Huang, K. Meng, P. J. Shi, Y. R. Wang, H. Y. Luo, et al. 2010. Cloning of a new xylanase gene from Streptomyces sp. TN119 using a modified thermal asymmetric interlaced-PCR specific for GC-rich genes and biochemical characterization. Appl. Biochem. Biotechnol. 160: 1277-1292. https://doi.org/10.1007/s12010-009-8642-8
  29. Zhou, J. P., P. J. Shi, H. Q. Huang, Y. N. Cao, K. Meng, P. L. Yang, et al. 2010. A new ${\alpha}$-galactosidase from symbiotic Flavobacterium sp. TN17 reveals four residues essential for ${\alpha}$-galactosidase activity of gastrointestinal bacteria. Appl. Microbiol. Biotechnol. 88: 1297-1309. https://doi.org/10.1007/s00253-010-2809-7
  30. Zhou, J. P., P. J. Shi, R. Zhang, H. Q. Huang, K. Meng, P. L. Yang, and B. Yao. 2011. Symbiotic Streptomyces sp. TN119 GH 11 xylanase: A new pH-stable, protease- and SDS-resistant xylanase. J. Ind. Microbiol. Biotechnol. 38: 523-530. https://doi.org/10.1007/s10295-010-0795-5
  31. Zhou, J. P., R. Zhang, P. J. Shi, H. Q. Huang, K. Meng, T. Z. Yuan, et al. 2011. A novel low-temperature-active ${\beta}$-glucosidase from symbiotic Serratia sp. TN49 reveals four essential positions for substrate accommodation. Appl. Microbiol. Biotechnol. 92: 305-315. https://doi.org/10.1007/s00253-011-3323-2

Cited by

  1. Cloning and Characterization of a Novel ${\alpha}$-Amylase from a Fecal Microbial Metagenome vol.24, pp.4, 2012, https://doi.org/10.4014/jmb.1310.10121
  2. Characterization of Sphingomonas sp. JB13 exo-inulinase: a novel detergent-, salt-, and protease-tolerant exo-inulinase vol.19, pp.2, 2012, https://doi.org/10.1007/s00792-014-0724-z
  3. Bacillus licheniformis 분리균 2종의 α-Galactosidase 생산성과 효소특성 vol.43, pp.3, 2012, https://doi.org/10.4014/mbl.1505.05006
  4. Purification of thermostable α‐galactosidase from Irpex lacteus and its use for hydrolysis of oligosaccharides vol.56, pp.5, 2012, https://doi.org/10.1002/jobm.201500668
  5. A novel α-galactosidase from the thermophilic probiotic Bacillus coagulans with remarkable protease-resistance and high hydrolytic activity vol.13, pp.5, 2018, https://doi.org/10.1371/journal.pone.0197067
  6. Engineering a Trypsin-Resistant Thermophilic α-Galactosidase to Enhance Pepsin Resistance, Acidic Tolerance, Catalytic Performance, and Potential in the Food and Feed Industry vol.68, pp.39, 2020, https://doi.org/10.1021/acs.jafc.0c02175
  7. Identification and Characterization of a Thermostable GH36 α-Galactosidase from Anoxybacillus vitaminiphilus WMF1 and Its Application in Synthesizing Isofloridoside by Reverse Hydrolysis vol.22, pp.19, 2021, https://doi.org/10.3390/ijms221910778