References
-
Baik, S. H., K. Saito, A. Yokota, K. Asano, and F. Tomita. 2000. Molecular cloning and high-level expression in Escherichia coli of fungal
${\alpha}$ -galactosidase from Absidia corymbifera IFO 8084. J. Biosci. Bioeng. 90: 168-173. - Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
-
Buja, L. M. 2009. Evaluation of recombinant
${\alpha}$ -galactosidase A therapy for amelioration of the cardiovascular manifestations of Fabry disease: An important role for endomyocardial biopsy. Circulation 119: 2539-2541. https://doi.org/10.1161/CIRCULATIONAHA.109.861534 - Cantarel, B. L., P. M. Coutinho, C. Rancurel, T. Bernard, V. Lombard, and B. Henrissat. 2009. The Carbohydrate-Active EnZymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Res. 37: D233-D238. https://doi.org/10.1093/nar/gkn663
-
Cao, Y., Y. Wang, H. Luo, P. Shi, K. Meng, Z. Zhou, et al. 2009. Molecular cloning and expression of a novel proteaseresistant GH-36
${\alpha}$ -galactosidase from Rhizopus sp. F78 ACCC 30795. J. Microbiol. Biotechnol. 19: 1295-1300. -
Cao, Y., Y. Wang, K. Meng, Y. Bai, P. Shi, H. Luo, et al. 2009. A novel protease-resistant
${\alpha}$ -galactosidase with high hydrolytic activity from Gibberella sp. F75: Gene cloning, expression, and enzymatic characterization. Appl. Microbiol. Biotechnol. 83: 875-884. https://doi.org/10.1007/s00253-009-1939-2 -
Cao, Y. N., T. Z. Yuan, P. J. Shi, H. Y. Luo, N. Li, K. Meng, et al. 2010. Properties of a novel
${\alpha}$ -galactosidase from Streptomyces sp. S27 and its potential for soybean processing. Enzyme Microb. Technol. 47: 305-312. https://doi.org/10.1016/j.enzmictec.2010.09.007 - Clarke, E. J. and J. Wiseman. 2000. Developments in plant breeding for improved nutritional quality of soya beans II. Antinutritional factors. J. Agric. Sci. 134: 125-136. https://doi.org/10.1017/S0021859699007443
-
Clarke, J. H., K. Davidson, J. E. Rixon, J. R. Halstead, M. P. Fransen, H. J. Gilbert, and G. P. Hazlewood. 2000. A comparison of enzyme-aided bleaching of softwood paper pulp using combinations of xylanase, mannanase and
${\alpha}$ -galactosidase. Appl. Microbiol. Biotechnol. 53: 661-667. https://doi.org/10.1007/s002530000344 - Dhawan, S. and J. Kaur. 2007. Microbial mannanases: An overview of production and applications. Crit. Rev. Biotechnol. 27: 197-216. https://doi.org/10.1080/07388550701775919
- Farias, M. E., S. Revale, E. Mancini, O. Ordonez, A. Turjanski, N. Cortez, and M. P. Vazquez. 2011. Genome sequence of Sphingomonas sp. S17, isolated from an alkaline, hyperarsenic, and hypersaline volcano-associated lake at high altitude in the Argentinean Puna. J. Bacteriol. 193: 3686-3687. https://doi.org/10.1128/JB.05225-11
- Fialho, A. M., L. M. Moreira, A. T. Granja, A. O. Popescu, K. Hoffmann, and I. Sa-Correia. 2008. Occurrence, production, and applications of gellan: Current state and perspectives. Appl. Microbiol. Biotechnol. 79: 889-900. https://doi.org/10.1007/s00253-008-1496-0
-
Ghazi, S., J. A. Rooke, and H. Galbraith. 2003. Improvement of the nutritive value of soybean meal by protease and
${\alpha}$ -galactosidase treatment in broiler cockerels and broiler chicks. Br. Poultry Sci. 44: 410-418. https://doi.org/10.1080/00071660310001598283 - Graham, K. K., M. S. Kerley, J. D. Firman, and G. L. Allee. 2002. The effect of enzyme treatment of soybean meal on oligosaccharide disappearance and chick growth performance. Poultry Sci. 81: 1014-1019.
- Gupta, R., Q. K. Beg, and P. Lorenz. 2002. Bacterial alkaline proteases: Molecular approaches and industrial applications. Appl. Microbiol. Biotechnol. 59: 15-32. https://doi.org/10.1007/s00253-002-0975-y
-
Jaswal, S. S., J. L. Sohl, J. H. Davis, and D. A. Agard. 2002. Energetic landscape of
${\alpha}$ -lytic protease optimizes longevity through kinetic stability. Nature 415: 343-346. https://doi.org/10.1038/415343a - Lane, D. J. 1991. 16S/23S rRNA sequencing, pp. 115-175. In E. Stackebrandt and M. Goodfellow (eds.). Nucleic Acid Techniques in Bacterial Systematics. Wiley, New York.
-
Linden, J. C. 1982. Immobilized
${\alpha}$ -D-galactosidase in the sugarbeet industry. Enzyme Microb. Technol. 4: 130-136. https://doi.org/10.1016/0141-0229(82)90103-X - Lineweaver, H. and D. Burk. 1934. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56: 658-666. https://doi.org/10.1021/ja01318a036
-
Liu, X. D., K. Meng, Y. R. Wang, P. J. Shi, T. Z. Yuan, P. L. Yang, et al. 2009. Gene cloning, expression and characterization of an
${\alpha}$ -galactosidase from Pedobacter nyackensis MJ11 CGMCC 2503 with potential as an aquatic feed additive. World J. Microbiol. Biotechnol. 25: 1633-1642. https://doi.org/10.1007/s11274-009-0057-8 -
Manning, M. and W. Colon. 2004. Structural basis of protein kinetic stability: Resistance to sodium dodecyl sulfate suggests a central role for rigidity and a bias toward
${\beta}$ -sheet structure. Biochemistry 43: 11248-11254. https://doi.org/10.1021/bi0491898 -
Mi, S., K. Meng, Y. Wang, Y. Bai, T. Yuan, H. Luo, and B. Yao. 2007. Molecular cloning and characterization of a novel
${\alpha}$ - galactosidase gene from Penicillium sp. F63 CGMCC 1669 and expression in Pichia pastoris. Enzyme Microb. Technol. 40: 1373-1380. https://doi.org/10.1016/j.enzmictec.2006.10.017 - Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
- Miller, T. R., A. L. Delcher, S. L. Salzberg, E. Saunders, J. C. Detter, and R. U. Halden. 2010. Genome sequence of the dioxin-mineralizing bacterium Sphingomonas wittichii RW1. J. Bacteriol. 192: 6101-6102. https://doi.org/10.1128/JB.01030-10
- Trinder, P. 1969. Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. J. Clin. Pathol. 22: 158-161. https://doi.org/10.1136/jcp.22.2.158
- Whitcomb, D. C. and M. E. Lowe. 2007. Human pancreatic digestive enzymes. Digest. Dis. Sci. 52: 1-17. https://doi.org/10.1007/s10620-006-9589-z
- White, D. C., S. D. Sutton, and D. B. Ringelberg. 1996. The genus Sphingomonas: Physiology and ecology. Curr. Opin. Biotechnol. 7: 301-306. https://doi.org/10.1016/S0958-1669(96)80034-6
- Zhou, J. P., H. Q. Huang, K. Meng, P. J. Shi, Y. R. Wang, H. Y. Luo, et al. 2010. Cloning of a new xylanase gene from Streptomyces sp. TN119 using a modified thermal asymmetric interlaced-PCR specific for GC-rich genes and biochemical characterization. Appl. Biochem. Biotechnol. 160: 1277-1292. https://doi.org/10.1007/s12010-009-8642-8
-
Zhou, J. P., P. J. Shi, H. Q. Huang, Y. N. Cao, K. Meng, P. L. Yang, et al. 2010. A new
${\alpha}$ -galactosidase from symbiotic Flavobacterium sp. TN17 reveals four residues essential for${\alpha}$ -galactosidase activity of gastrointestinal bacteria. Appl. Microbiol. Biotechnol. 88: 1297-1309. https://doi.org/10.1007/s00253-010-2809-7 - Zhou, J. P., P. J. Shi, R. Zhang, H. Q. Huang, K. Meng, P. L. Yang, and B. Yao. 2011. Symbiotic Streptomyces sp. TN119 GH 11 xylanase: A new pH-stable, protease- and SDS-resistant xylanase. J. Ind. Microbiol. Biotechnol. 38: 523-530. https://doi.org/10.1007/s10295-010-0795-5
-
Zhou, J. P., R. Zhang, P. J. Shi, H. Q. Huang, K. Meng, T. Z. Yuan, et al. 2011. A novel low-temperature-active
${\beta}$ -glucosidase from symbiotic Serratia sp. TN49 reveals four essential positions for substrate accommodation. Appl. Microbiol. Biotechnol. 92: 305-315. https://doi.org/10.1007/s00253-011-3323-2
Cited by
-
Cloning and Characterization of a Novel
${\alpha}$ -Amylase from a Fecal Microbial Metagenome vol.24, pp.4, 2012, https://doi.org/10.4014/jmb.1310.10121 - Characterization of Sphingomonas sp. JB13 exo-inulinase: a novel detergent-, salt-, and protease-tolerant exo-inulinase vol.19, pp.2, 2012, https://doi.org/10.1007/s00792-014-0724-z
- Bacillus licheniformis 분리균 2종의 α-Galactosidase 생산성과 효소특성 vol.43, pp.3, 2012, https://doi.org/10.4014/mbl.1505.05006
- Purification of thermostable α‐galactosidase from Irpex lacteus and its use for hydrolysis of oligosaccharides vol.56, pp.5, 2012, https://doi.org/10.1002/jobm.201500668
- A novel α-galactosidase from the thermophilic probiotic Bacillus coagulans with remarkable protease-resistance and high hydrolytic activity vol.13, pp.5, 2018, https://doi.org/10.1371/journal.pone.0197067
- Engineering a Trypsin-Resistant Thermophilic α-Galactosidase to Enhance Pepsin Resistance, Acidic Tolerance, Catalytic Performance, and Potential in the Food and Feed Industry vol.68, pp.39, 2020, https://doi.org/10.1021/acs.jafc.0c02175
- Identification and Characterization of a Thermostable GH36 α-Galactosidase from Anoxybacillus vitaminiphilus WMF1 and Its Application in Synthesizing Isofloridoside by Reverse Hydrolysis vol.22, pp.19, 2021, https://doi.org/10.3390/ijms221910778