DOI QR코드

DOI QR Code

Evaluation of the Probiotic Potential of Bacillus polyfermenticus CJ6 Isolated from Meju, a Korean Soybean Fermentation Starter

  • Jung, Ji Hye (Department of Food and Nutrition, Kimchi Research Center, Chosun University) ;
  • Lee, Myung Yul (Department of Food and Nutrition, Kimchi Research Center, Chosun University) ;
  • Chang, Hae Choon (Department of Food and Nutrition, Kimchi Research Center, Chosun University)
  • Received : 2012.05.23
  • Accepted : 2012.07.13
  • Published : 2012.11.28

Abstract

To evaluate the probiotic potential of Bacillus polyfermenticus CJ6 isolated from meju, a Korean traditional soybean fermentation starter, its functionality and safety were investigated. B. polyfermenticus CJ6 was sensitive to all antibiotics listed by the European Food Safety Authority. The strain was also non-hemolytic, carried no emetic toxin or enterotoxin genes, and produced no enterotoxins. The resistance of B. polyfermenticus CJ6 vegetative cells and spores to simulated gastrointestinal conditions was high (60-100% survival rate). B. polyfermenticus CJ6 produced high amounts (0.36 g as a purified lyophilized form) of ${\gamma}$-polyglutamic acid (PGA). We speculate that the improved cell viability and the production of ${\gamma}$-PGA have a significant correlation. Adhesion of the strain to Caco-2 and HT-29 cells was weaker than that of the reference strain (Lb. rhamnosus GG), but it was comparable to or stronger than those of reported Bacillus spp. When B. polyfermenticus CJ6 spores were given orally to mice, the number of cells excreted in the feces was 4-fold higher than the original inocula. This suggests the inoculated spores propagated within the intestinal tract of the mice. This idea was confirmed by field emission scanning electron microscopy, which revealed directly that B. polyfermenticus CJ6 cells germinated and adhered within the gastrointestinal tract of mice. Taken together, these findings suggest that B. polyfermenticus CJ6 has probiotic potential for both human consumption and use in animal feeds.

Keywords

References

  1. Bae, Y. D. 2002. Tradition and change of ethnic cuisine through the Doenjang. Kor. Ethnic 35: 51-78.
  2. Bajaj, I. and R. Singhal. 2011. Poly (glutamic acid) - An emerging biopolymer of commercial interest. Bioresour. Technol. 102: 5551-5561. https://doi.org/10.1016/j.biortech.2011.02.047
  3. Barbosa, T. M., C. R. Serra, R. M. La Ragione, M. J. Woodward, and A. O. Henriques. 2005. Screening for Bacillus isolates in the broiler gastrointestinal tract. Appl. Environ. Microbiol. 71: 968-978. https://doi.org/10.1128/AEM.71.2.968-978.2005
  4. Bohin, J. P., D. Rigomier, and P. Schaeffer. 1976. Ethanol sensitivity of sporulation in Bacillus subtilis: A new tool for the analysis of the sporulation process. J. Bacteriol. 127: 934-940.
  5. Casula, G. and S. M. Cutting. 2002. Bacillus probiotics: Spore germination in the gastrointestinal tract. Appl. Environ. Microbiol. 68: 2344-2352. https://doi.org/10.1128/AEM.68.5.2344-2352.2002
  6. Cenci, G., F. Trotta, and G. Caldini. 2006. Tolerance to challenges miming gastrointestinal transit by spores and vegetative cells of Bacillus clausii. J. Appl. Microbiol. 101: 1208-1215. https://doi.org/10.1111/j.1365-2672.2006.03042.x
  7. Cutting, S. M. 2011. Bacillus probiotics. Food Microbiol. 28: 214-220. https://doi.org/10.1016/j.fm.2010.03.007
  8. Duc, Le H., H. A. Hong, T. M. Barbosa, A. O. Henriques, and S. M. Cutting. 2004. Characterization of Bacillus probiotics available for human use. Appl. Environ. Microbiol. 70: 2161-2171. https://doi.org/10.1128/AEM.70.4.2161-2171.2004
  9. Duc, Le H., H. A. Hong, and S. M. Cutting. 2003. Germination of the spore in the gastrointestinal tract provides a novel route for heterologous antigen delivery. Vaccine 21: 4215-4224. https://doi.org/10.1016/S0264-410X(03)00492-4
  10. European Food Safety Authority (EFSA). 2005. Opinion of the scientific committee on a request from EFSA related to a generic approach to the safety assessment by EFSA of microorganisms used in food/feed and the production of food/feed additives. EFSA J. 226: 1-12.
  11. European Food Safety Authority (EFSA). 2008. Technical guidance prepared by the Panel on Additives and Products or Substances used in the assessment of bacterial resistance to antibiotics of human and veterinary importance. EFSA J. 732: 1-15.
  12. Ehling-Schulz, M., N. Vukov, A. Schulz, R. Shaheen, M. Andersson, E. Martlbauer, and S. Scherer. 2005. Identification and partial characterization of the nonribosomal peptide synthetase gene responsible for cereulide production in emetic Bacillus cereus. Appl. Environ. Microbiol. 71: 105-113. https://doi.org/10.1128/AEM.71.1.105-113.2005
  13. Fazzini, M. M., R. Schuch, and V. A. Fischetti. 2010. A novel spore protein, ExsM, regulates formation of the exosporium in Bacillus cereus and Bacillus anthracis and affects spore size and shape. J. Bacteriol. 192: 4012-4021. https://doi.org/10.1128/JB.00197-10
  14. Goto, A. and M. Kunioka. 1992. Biosynthesis and hydrolysis of poly(${\gamma}$-glutamic acid) from Bacillus subtilis IFO3335. Biosci. Biotechnol. Biochem. 56: 1031-1035. https://doi.org/10.1271/bbb.56.1031
  15. Guinebretiere, M. H., V. Broussolle, and C. Nguyen-The. 2002. Enterotoxigenic profiles of food-poisoning and food-borne Bacillus cereus strains. J. Clin. Microbiol. 40: 3053-3056. https://doi.org/10.1128/JCM.40.8.3053-3056.2002
  16. Hoa, N. T., L. Baccigalupi, A. Huxham, A. Smertenko, P. H. Van, S. Ammendola, et al. 2000. Characterization of Bacillus species used for oral bacteriotherapy and bacterioprophylaxis of gastrointestinal disorders. Appl. Environ. Microbiol. 66: 5241-5247. https://doi.org/10.1128/AEM.66.12.5241-5247.2000
  17. Hoa, T. T., Le H. Duc, R. Isticato, L. Baccigalupi, E. Ricca, P. H. Van, and S. M. Cutting. 2001. Fate and dissemination of Bacillus subtilis spores in a murine model. Appl. Environ. Microbiol. 67: 3819-3823. https://doi.org/10.1128/AEM.67.9.3819-3823.2001
  18. Hong, H. A., Le H. Duc, and S. M. Cutting. 2005. The use of bacterial spore formers as probiotics. FEMS Microbiol. Rev. 29: 813-835.
  19. Hong, H. A., J. M. Huang, R. Khaneja, L. V. Hiep, M. C. Urdaci, and S. M. Cutting. 2008. The safety of Bacillus subtilis and Bacillus indicus as food probiotics. J. Appl. Microbiol. 105: 510-520. https://doi.org/10.1111/j.1365-2672.2008.03773.x
  20. Jung, J. H. and H. C. Chang. 2009. Antifungal activity of Bacillus polyfermenticus CJ6 isolated from Meju. J. Kor. Soc. Food Sci. Nutr. 38: 509-516. https://doi.org/10.3746/jkfn.2009.38.4.509
  21. Jung, J. H. and H. C. Chang. 2011. Characterization of antibacterial compounds from Bacillus polyfermenticus CJ6 and its growth inhibition effect on food-borne pathogens. J. Kor. Soc. Food Sci. Nutr. 40: 903-911. https://doi.org/10.3746/jkfn.2011.40.6.903
  22. Kalchayanand, N., P. Dunne, A. Sikes, and B. Ray. 2004. Viability loss and morphology change of foodborne pathogens following exposure to hydrostatic pressures in the presence and absence of bacteriocins. Int. J. Food Microbiol. 91: 91-98. https://doi.org/10.1016/S0168-1605(03)00324-6
  23. Kim, J. B., J. M. Kim, S. H. Cho, H. S. Oh, N. J. Choi, and D. H. Oh. 2011. Toxin genes profiles and toxin production ability of Bacillus cereus isolated from clinical and food samples. J. Food Sci. 76: T25-T29.
  24. Koransky, J. R., S. D. Allen, and V. R. Dowell Jr. 1978. Use of ethanol for selective isolation of spore-forming microorganisms. Appl. Environ. Microbiol. 35: 762-765.
  25. Laparra, J. M. and Y. Sanz. 2009. Comparison of in vitro models to study bacterial adhesion to the intestinal epithelium. Lett. Appl. Microbiol. 49: 695-701. https://doi.org/10.1111/j.1472-765X.2009.02729.x
  26. Lee, K. H., K. D. Jun, W. S. Kim, and H. D. Paik. 2001. Partial characterization of polyfermenticin SCD, a newly identified bacteriocin of Bacillus polyfermenticus. Lett. Appl. Microbiol. 32: 146-151. https://doi.org/10.1046/j.1472-765x.2001.00876.x
  27. Margolles, A., B. Mayo, and P. Ruas-Madiedo. 2009. Screening identification, and characterization of Lactobacillus and Bifidobacterium strains, pp. 4-43. In K. Nomoto, S. Salminen, and Y. K. Lee (eds.). Handbook of Probiotics and Prebiotics. John Willey & Sons Inc., New Jersey.
  28. Mazza, P. 1994. The use of Bacillus subtilis as an antidiarrhoeal microorganism. Boll. Chim. Farm. 133: 3-18.
  29. Rowan, N. J., K. Deans, J. G. Anderson, C. G. Gemmell, I. S. Hunter, and T. Chaithong. 2001. Putative virulence factor expression by clinical and food isolates of Bacillus spp. after growth in reconstituted infant milk formulae. Appl. Environ. Microbiol. 67: 3873-3881. https://doi.org/10.1128/AEM.67.9.3873-3881.2001
  30. Saarela, M., G. Morgensen, R. Fondén, J. Mattö, and T. Mattila-Sandholm. 2000. Probiotic bacteria: Safety, functional and technological properties. J. Biotechnol. 84: 197-215. https://doi.org/10.1016/S0168-1656(00)00375-8
  31. Salkinoja-Salonen, M. S., R. Vuorio, M. A. Andersson, P. Kampfer, M. C. Andersson, T. Honkanen-Buzalski, and A. C. Scoging. 1999. Toxigenic strains of Bacillus licheniformis related to food poisoning. Appl. Environ. Microbiol. 65: 4637-4645.
  32. Sergeev, N., M. Distler, M. Vargas, V. Chizhikov, K. E. Herold, and A. Rasooly. 2006. Microarray analysis of Bacillus cereus group virulence factors. J. Microbiol. Methods 65: 488-502. https://doi.org/10.1016/j.mimet.2005.09.013
  33. Shih, I. L. and V. T. Van. 2001. The production of poly- (gamma-glutamic acid) from microorganisms and its various applications. Bioresour. Technol. 79: 207-225 https://doi.org/10.1016/S0960-8524(01)00074-8
  34. Sorokulova, I. B., I. V. Pinchuk, M. Denayrolles, I. G. Osipova, J. M. Huang, S. M. Cutting, and M. C. Urdaci. 2008. The safety of two Bacillus probiotic strains for human use. Dig. Dis. Sci. 53: 954-963. https://doi.org/10.1007/s10620-007-9959-1
  35. Spinosa, M. R., T. Braccini, E. Ricca, M. De Felice, L. Morelli, G. Pozzi, and M. R. Oggioni. 2000. On the fate of ingested Bacillus spores. Res. Microbiol. 151: 361-368. https://doi.org/10.1016/S0923-2508(00)00159-5
  36. Tam, N. K., N. Q. Uyen, H. A. Hong, Le H. Duc, T. T. Hoa, C. R. Serra, et al. 2006. The intestinal life cycle of Bacillus subtilis and close relatives. J. Bacteriol. 188: 2692-2700. https://doi.org/10.1128/JB.188.7.2692-2700.2006
  37. Tanimoto, H., H. Sato, M. Karasawa, K. Iwasaki, A. Oshima, and S. Adachi. 2000. Feed composition containing poly- ${\gamma}$-glutamic acid. Japanese Patent WO9635339.
  38. Wang, B., J. Li, Q. Li, H. Zhang, and N. Li. 2009. Isolation of adhesive strains and evaluation of the colonization and immune response by Lactobacillus plantarum L2 in the rat gastrointestinal tract. Int. J. Food Microbiol. 132: 59-66. https://doi.org/10.1016/j.ijfoodmicro.2009.03.016
  39. Yuksekdag, Z. and B. Aslim. 2010. Assessment of potential probiotic and starter properties of Pediococcus spp. isolated from Turkish-type fermented sausages (sucuk). J. Microbiol. Biotechnol. 20: 161-168. https://doi.org/10.4014/jmb.0904.04019

Cited by

  1. Monitoring the Ecology of Bacillus During Daqu Incubation, a Fermentation Starter, Using Culture-Dependent and Culture-Independent Methods vol.23, pp.5, 2013, https://doi.org/10.4014/jmb.1211.11065
  2. Purification and Characterization of Heat-Tolerant Protease Produced by Bacillus polyfermenticus SCD vol.23, pp.11, 2012, https://doi.org/10.4014/jmb.1306.06073
  3. Survival and persistence of Bacillus clausii in the human gastrointestinal tract following oral administration as spore‐based probiotic formulation vol.119, pp.2, 2012, https://doi.org/10.1111/jam.12848
  4. Screening and Characterization of Potential Bacillus Starter Cultures for Fermenting Low-Salt Soybean Paste (Doenjang) vol.26, pp.4, 2012, https://doi.org/10.4014/jmb.1512.12014
  5. Importance of the gastrointestinal life cycle of Bacillus for probiotic functionality vol.54, pp.8, 2012, https://doi.org/10.1007/s13197-017-2688-3
  6. In vitro evaluation of candidate Bacillus spp. for animal feed vol.63, pp.2, 2012, https://doi.org/10.2323/jgam.2016.09.002
  7. Preliminary characterisation of Bacillus subtilis strain use as a dietary probiotic bio-additive in weaning piglet vol.45, pp.7, 2012, https://doi.org/10.5937/ffr1802203d