DOI QR코드

DOI QR Code

Comparison of Multilocus Sequence Typing (MLST) and Repetitive Sequence-Based PCR (rep-PCR) Fingerprinting for Differentiation of Campylobacter jejuni Isolated from Broiler in Chiang Mai, Thailand

  • Patchanee, Prapas (Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University) ;
  • Chokboonmongkol, Chomporn (Animal Health and Technical Service Office, Bangkok Agro-Industrial Products Public CO., LTD.) ;
  • Zessin, Karl-Hans (Department Panel, Veterinary Public Health, Free University Berlin) ;
  • Alter, Thomas (Institute of Food Hygiene, Free University Berlin) ;
  • Pornaem, Sarinya (National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency) ;
  • Chokesajjawatee, Nipa (National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency)
  • Received : 2011.12.21
  • Accepted : 2012.06.25
  • Published : 2012.11.28

Abstract

We compared rapid fingerprinting using repetitive sequencebased PCR (rep-PCR) for subtyping Campylobacter jejuni isolates to the widely used multilocus sequence typing (MLST). Representative C. jejuni isolates (n = 16) from broilers were analyzed using MLST and rep-PCR. Both techniques demonstrated an equal discriminatory power of 0.8917, and 9 subgroups were identified. Clonal identification of all 16 isolates was identical for both techniques. The rep-PCR as described in this study may be used as a rapid and cost-effective alternative for subtyping of C. jejuni isolates, or as an effective screening tool in large epidemiological studies.

Keywords

References

  1. Chokesajjawatee, N., Y. G. Zo, and R. R. Colwell. 2008. Determination of clonality and relatedness of Vibrio cholerae isolates by genomic fingerprinting, using long-range repetitive element sequence-based PCR. Appl. Environ. Microbiol. 74: 5392-5401. https://doi.org/10.1128/AEM.00151-08
  2. Dingle, K. E., F. M. Colles, D. R. A. Wareing, R. Ure, A. J. Fox, F. E. Bolton, et al. 2001. Multilocus sequence typing system for Campylobacter jejuni. J. Clin. Microbiol. 39: 14-23. https://doi.org/10.1128/JCM.39.1.14-23.2001
  3. Feil, E. J., B. C. Li, D. M. Aanensen, W. P. Hanage, and B. G. Spratt. 2004. eBURST: Inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J. Bacteriol. 186: 1518-1530. https://doi.org/10.1128/JB.186.5.1518-1530.2004
  4. Giesendorf, B. A. J., H. Goossens, H. G. M. Niesters, A. Van Belkum, A. Koeken, H. P. Endtz, H. Stegeman, and W. G. V. Quint. 1994. Polymerase chain reaction-mediated DNA fingerprinting for epidemiological studies on Campylobacter spp. J. Med. Microbiol. 40: 141-147. https://doi.org/10.1099/00222615-40-2-141
  5. Hook, H., M. A. Fattah, H. Ericsson, I. Vågsholm, and M. L. Danielsson-Tham. 2005. Genotype dynamics of Campylobacter jejuni in a broiler flock. Vet. Microbiol. 106: 109-117. https://doi.org/10.1016/j.vetmic.2004.12.017
  6. Hunter, P. R. 1990. Reproducibility and indices of discriminatory power of microbial typing methods. J. Clin. Microbiol. 28: 1903-1905.
  7. Iriarte, M. P. and R. J. Owen. 1996. Repetitive and arbitrary primer DNA sequences in PCR-mediated fingerprinting of outbreak and sporadic isolates of Campylobacter jejuni. FEMS Immunol. Med. Microbiol. 15: 17-22. https://doi.org/10.1111/j.1574-695X.1996.tb00353.x
  8. ISO. 2006. Microbiology of food and animal feed stuffs - Horizontal method for detection and enumeration of Campylobacter spp. ISO/TS 10272-1:2006. International Organization for Standardization.
  9. Lund, M., S. Nordentoft, K. Pedersen, and M. Madsen. 2004. Detection of Campylobacter spp. in chicken fecal samples by real-time PCR. J. Clin. Microbiol. 42: 5125-5132. https://doi.org/10.1128/JCM.42.11.5125-5132.2004
  10. Steinbrueckner, B., F. Ruberg, and M. Kist. 2001. Bacterial genetic fingerprint: A reliable factor in the study of the epidemiology of human Campylobacter enteritis? J. Clin. Microbiol. 39: 4155-4159. https://doi.org/10.1128/JCM.39.11.4155-4159.2001
  11. Steinhauserova, I., J. Ceskova, K. Fojtikova, and I. Obrovska. 2001. Identification of thermophilic Campylobacter spp. by phenotypic and molecular methods. J. Appl. Microbiol. 90: 470-475. https://doi.org/10.1046/j.1365-2672.2001.01267.x
  12. Takahashi, R., F. Shahada, T. Chuma, and K. Okamoto. 2006. Analysis of Campylobacter spp. contamination in broilers from the farm to the final meat cuts by using restriction fragment length polymorphism of the polymerase chain reaction products. Int. J. Food Microbiol. 110: 240-245. https://doi.org/10.1016/j.ijfoodmicro.2006.04.043
  13. Thakur, S. and W. A. Gebreyes. 2005. Campylobacter coli in swine production: Antimicrobial resistance mechanisms and molecular epidemiology. J. Clin. Microbiol. 43: 5705-5714. https://doi.org/10.1128/JCM.43.11.5705-5714.2005
  14. Versalovic, J., M. Schneider, F. J. De Bruijn, and J. R. Lupski. 1994. Genomic fingerprinting of bacteria using repetitive sequencebased polymerase chain reaction. Methods Mol. Cell. Biol. 5: 25-40.
  15. Wang, G., C. G. Clark, T. M. Taylor, C. Pucknell, C. Barton, L. Price, D. L. Woodward, and F. G. Rodgers. 2002. Colony multiplex PCR assay for identification and differentiation of Campylobacter jejuni, C. coli, C. lari, C. upsaliensis, and C. fetus subsp. fetus. J. Clin. Microbiol. 40: 4744-4747. https://doi.org/10.1128/JCM.40.12.4744-4747.2002

Cited by

  1. Genetic Similarity Using MLST Amongst Campylobacter jejuni Isolates from Children with Diarrhea Symptoms and Broilers vol.87, pp.4, 2017, https://doi.org/10.1007/s40011-016-0720-4
  2. Diversity of Serratia marcescens Strains Associated with Cucurbit Yellow Vine Disease in Georgia vol.101, pp.1, 2017, https://doi.org/10.1094/pdis-05-16-0618-re
  3. Comparing the Genetic Diversity and Antimicrobial Resistance Profiles of Campylobacter jejuni Recovered from Cattle and Humans vol.8, pp.None, 2012, https://doi.org/10.3389/fmicb.2017.00818
  4. Multilocus sequence analysis of diverse Streptococcus iniae isolates indicates an underlying genetic basis for phenotypic heterogeneity vol.141, pp.None, 2012, https://doi.org/10.3354/dao03521
  5. Genetic diversity and molecular epidemiology of Candida albicans from vulvovaginal candidiasis patients vol.92, pp.None, 2021, https://doi.org/10.1016/j.meegid.2021.104893