DOI QR코드

DOI QR Code

Enhanced Carboxymethylcellulase Production by a Newly Isolated Marine Bacterium, Cellulophaga lytica LBH-14, Using Rice Bran

  • Gao, Wa (Department of Medical Bioscience, Graduate School of Donga-A University) ;
  • Lee, Eun-Jung (Department of Medical Bioscience, Graduate School of Donga-A University) ;
  • Lee, Sang-Un (Department of Medical Bioscience, Graduate School of Donga-A University) ;
  • Li, Jianhong (College of Plant Science and Technology, Huazhong Agricultural University) ;
  • Chung, Chung-Han (Department of Biotechnology, College of Natural Resources and Life Science, Dong-A University) ;
  • Lee, Jin-Woo (BK21 Bio-Silver Program of Dong-A)
  • Received : 2012.03.05
  • Accepted : 2012.06.21
  • Published : 2012.10.28

Abstract

The aim of this work was to establish the optimal conditions for production of carboxymethylcellulase (CMCase) by a newly isolated marine bacterium using response surface methodology (RSM). A microorganism producing CMCase, isolated from seawater, was identified as Cellulophaga lytica based 16S rDNA sequencing and the neighborjoining method. The optimal conditions of rice bran, ammonium chloride, and initial pH of the medium for cell growth were 100.0 g/l, 5.00 g/l, and 7.0, respectively, whereas those for production of CMCase were 79.9 g/l, 8.52 g/l, and 6.1. The optimal concentrations of $K_2HPO_4$, NaCl, $MgSO_4{\cdot}7H_2O$, and $(NH_4)_2SO_4$ for cell growth were 6.25, 0.62, 0.28, and 0.42 g/l, respectively, whereas those for production of CMCase were 3.72, 0.54, 0.70, and 0.34 g/l. The optimal temperature for cell growth and the CMCase production by C. lytica LBH-14 were $35^{\circ}C$ and $25^{\circ}C$, respectively. The maximal production of CMCase under optimized condition for 3 days was 110.8 U/ml, which was 5.3 times higher than that before optimization. In this study, rice bran and ammonium chloride were developed as carbon and nitrogen sources for the production of CMCase by C. lytica LBH-14. The time for production of CMCase by a newly isolated marine bacterium with submerged fermentations reduced to 3 days, which resulted in enhanced productivity of CMCase and a decrease in its production cost.

Keywords

References

  1. Ballesteros, M., J. M. Oliva, M. J. Negro, P. Manzanares, and J. Ballesteros. 2004. Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SSF) with Kluyveromeces marxianus CECT 10875. Process Biochem. 39: 1843-1848. https://doi.org/10.1016/j.procbio.2003.09.011
  2. Blumer-Schuette, S. E., I. Kataeva, J. Westpheling, M. W. W. Adams, and R. M. Kelly. 2008. Extremely thermophilic microorganisms for biomass conversion: Status and prospects. Curr. Opin. Biotechnol. 19: 210-217. https://doi.org/10.1016/j.copbio.2008.04.007
  3. Chuhan, K., U. Trivedi, and K. C. Patel. C. 2006. Application of response surface methodology for optimization of lactic acid production using data juice. J. Microbiol. Biotechnol. 16: 1410-1415.
  4. Cui, J. D. 2010. Optimization of medium for phenylalanine ammonia lyase production in E. coli using response surface method. Kor. J. Chem. Eng. 27: 174-178. https://doi.org/10.1007/s11814-009-0234-3
  5. Emtiazi, G. and I. Nahvi. 2004. Production of thermostable ${\alpha}$- amylase and cellulase from Cellulomonas sp. J. Microbiol. Biotechnol. 14: 1196-1199.
  6. Golias, H., G. J. Dumsday, G. A. Stanley, and N. B. Pamment. 2000. Characteristics of cellulase preparation affecting the simultaneous saccharification and fermentation of cellulose to ethanol. Biotechnol. Lett. 26: 617-621.
  7. Hongwen, C., F. Baishan, and H. Zongding. 2005. Optimization of process parameters for key enzymes accumulation of 1,3-propanediol production form Klebsiella pneumoniae. Biochem. Eng. J. 25: 47-53. https://doi.org/10.1016/j.bej.2005.03.011
  8. Hui, C., X. Xu, and Y. Zhu. 2010. Optimization of hydroxyl radical scavenging activity of exopolysaccharides from Inonotus obliquus in submerged fermentation using response surface method. J. Microbiol. Biotechnol. 20: 835-843.
  9. Jaleel, C. A., P. Manivannan, G. M. A. Lakshmanan, R. Sridharan, and R. Panneerselvam. 2007. NaCl as a physiological modulator of proline metabolism and antioxidant potential in Phyllanthus amarus. Compt. Rend. Biol. 330: 806-813. https://doi.org/10.1016/j.crvi.2007.08.009
  10. Jatinder, K., B. S. Chadha, and H. S. Saini. 2006. Optimization of medium components for production of cellulases by Melanocarpus sp. MTCC 3922 under solid-state fermentation. World J. Microbiol. Biotechnol. 22: 15-22. https://doi.org/10.1007/s11274-005-2821-8
  11. Jin, I. H., D. Y. Jing, C. W. Son, S. K. Kim, W. Gao, C. H. Chung, and J. W. Lee. 2011. Enhanced production of heteropolysaccharide-7 by Beijerinkia indica HS-2001 in repeated batch culture with optimized substitution of culture medium. Biotechnol. Bioprocess Eng. 16: 245-255. https://doi.org/10.1007/s12257-010-0120-1
  12. Jo, K. I., Y. J. Lee, B. K. Kim, B. H. Lee, C. H. Chung, S. W. Nam, S. K. Kim, and J. W. Lee. 2008. Pilot-scale production of carboxymethylcellulase from rice hull by Bacillus amyloliquefaciens DL-3. Biotechnol. Bioprocess Eng. 13: 182-188. https://doi.org/10.1007/s12257-007-0149-y
  13. Khan, M. A., R. Hamid, M. Ahmad, M. Z. Abdin, and S. Javed. 2010. Optimization of culture media for enhanced chitinase production from a novel strain of Stenotrophomonas maltophilia using response surface methodology. J. Microbiol. Biotechnol. 20: 1597-1602. https://doi.org/10.4014/jmb.0909.09040
  14. Khuri, A. I. and J. A. Cornell. 1987. Response Surfaces: Design and Analysis. Marcel Dekker, New York.
  15. Kim, H. J., Y. J. Lee, W. Gao, C. H. Chung, and J. W. Lee. 2012. Optimization of salts in medium for production of carboxymethylcellulase by a psychrophilic marine bacterium, Psychrobacter aquimaris LBH-10 using two statistical method. Kor. J. Chem. Eng. DOI:10.1007/s11814-011-0192-4.
  16. Kim, H. J., Y. J. Lee, W. Gao, C. H. Chung, and J. W. Lee. 2011. Statistical optimization for production of cellulases by a psychrophilic marine bacterium, Psychrobacter aquimaris LBH-10 from rice bran using an orthogonal array method. Biotechnol. Bioprocess Eng. 16: 542-548. https://doi.org/10.1007/s12257-010-0457-5
  17. Kim, B. K., B. H. Lee, Y. J. Lee, I. H. Jin, C. H. Chung, and J. W. Lee. 2009. Purification and characterization of carboxymethylcellulase isolated from a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzyme Microb. Technol. 44: 411-416. https://doi.org/10.1016/j.enzmictec.2009.02.005
  18. Kumar, S., K. Tamura, and N. Nei. 1993. MEGA: Molecular Evolutionary Genetic Analysis. Version 1.01. The Pennsylvania State University, University Park.
  19. Latifian, M., Z. Hamidi-Esfahani, and M. Barzegar. 2007. Evaluation of culture conditions for cellulase production by two Trichoderma reesei mutants under solid-state fermentation conditions. Bioresour. Technol. 98: 3634-3637. https://doi.org/10.1016/j.biortech.2006.11.019
  20. Lee, B. H., B. K. Kim, Y. J. Lee, C. H. Chung, and J. W. Lee. 2010. Industrial scale of optimization for the production of carboxymethylcellulase from rice bran by a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzyme Microb. Technol. 46: 38-42. https://doi.org/10.1016/j.enzmictec.2009.07.009
  21. Lee, S. M. and Y. M. Koo. 2001. Pilot-scale production of cellulase using Trichoderma reesei Rut C-30 in fed-batch mode. J. Microbiol. Biotechnol. 11: 229-233.
  22. Lee, Y. J., B. K. Kim, B. H. Lee, K. I. Jo, N. K. Lee, C. H. Chung, Y. C. Lee, and J. W. Lee. 2008. Purification and characterization of cellulase produced by Bacillus amyloliquefaciens DL-3 utilizing rice hull. Bioresour. Technol. 99: 378-386. https://doi.org/10.1016/j.biortech.2006.12.013
  23. Lee, Y. J., H. J. Kim, W. Gao, C. H. Chung, and J. W. Lee. 2011. Comparison of statistical methods for optimization of salts in the medium for production of carboxymethylcellulase of Bacillus amyloliquefaciens DL-3 by a recombinant E. coli JM109/DL-3. J. Life Sci. 21: 1205-1213. https://doi.org/10.5352/JLS.2011.21.9.1205
  24. Liu, J., A. J. Lewitus, J. W. Kempton, and S. B. Wilde. 2008. The association of algicidal bacteria and Raphidophyte blooms in South Carolina detention ponds. Harmful Algae 7: 184-193. https://doi.org/10.1016/j.hal.2007.07.001
  25. Mayende, L., B. S. Wilhemi, and B. I. Pletschke. 2006. Cellulase (CMCase) and polyphenol oxidases from thermophilic Bacillus sp. isolated from compost. Soil Biol. Biochem. 38: 2963-2966. https://doi.org/10.1016/j.soilbio.2006.03.019
  26. Perepelov, A. V., A. S. Shashkov, S. V. Tomshich, N. A. Komandrova, and O. I. Nedashkovskaya. 2007. A pseudoaminic acid-containing O-specific polysaccharide from a marine bacterium Cellophaga fucicola. Carbohydr. Res. 342: 1378-1381. https://doi.org/10.1016/j.carres.2007.04.001
  27. Rasmussnen, R. S. and M. T. Morrissey. 2007. Marine biotechnology for production of food ingredients. Adv. Food Nutr. Res. 52: 237-292.
  28. Roboson, L. M. and G. H. Chambliss. 1989. Cellulases of bacterial origin. Enzyme Microb. Technol. 11: 626-644. https://doi.org/10.1016/0141-0229(89)90001-X
  29. Ryu, D. D. Y. and M. Mandels. 1980. Cellulase: Biosynthesis and applications. Enzyme Microb. Technol. 2: 91-102. https://doi.org/10.1016/0141-0229(80)90063-0
  30. Saitous, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  31. Senthikumar, S. R., A. Ashokkumar, K. C. Raj, and P. Cunasekraran. 2005. Optimization of medium composition for alkali-stable xylanase production by Aspergillus fischeri Fxn 1 in solid-state fermentation using central composite rotary design. Bioresour. Technol. 96: 1380-1386. https://doi.org/10.1016/j.biortech.2004.11.005
  32. Sukumaran, R. K., R. R. Singhania, G. M. Mathew, and A. Pandey. 2009. Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bioethanol production. Renew. Energy 34: 421-424. https://doi.org/10.1016/j.renene.2008.05.008
  33. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionsspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  34. Tomas-Pejo, E., M. Carcia-Aparicio, M. J. Negr, J. M. Oliva, and M. Ballesteros. 2009. Effect of different cellulase dosage on cell viability and ethanol production by Kluyveromyces marxianus in SSF process. Bioresour. Technol. 100: 890-895. https://doi.org/10.1016/j.biortech.2008.07.012
  35. Wei, G. Y., W. Gao, I. H. Jin, S. Y. Yoo, J. H. Lee, C. H. Chung, and J. W. Lee. 2009. Pretreatment and saccharification of rice hulls for the production of fermentable sugars. Biotechnol. Bioprocess Eng. 14: 828-834. https://doi.org/10.1007/s12257-009-0029-8
  36. Weisburg, W. G., S. M. Barns, D. A. Pelletire, and D. J. Lane. 1991. 16S ribosomal DNA amplication for phylogenetic study. J. Bacteriol. 173: 697-703.
  37. Yi, J. C., J. C. Sandra, A. B. John, and T. C. Shu. 1999. Production and distribution of endoglucanase, cellobiohydrolase, and $\beta$-glucosidase components of the cellulolytic system of Volvariella volvacea, the edible straw mushroom. Appl. Environ. Microbiol. 65: 553-559.

Cited by

  1. Enhanced Biofuel Production from High-Concentration Bioethanol Wastewater by a Newly Isolated Heterotrophic Microalga, Chlorella vulgaris LAM-Q vol.23, pp.10, 2012, https://doi.org/10.4014/jmb.1301.01046
  2. Enhanced Production of Cellobiase by a Marine Bacterium, Cellulophaga lytica LBH-14, in Pilot-Scaled Bioreactor Using Rice Bran vol.23, pp.4, 2012, https://doi.org/10.5352/jls.2013.23.4.542
  3. Cellulophaga lytica PKA 1005의 Cellulose 분해 조효소 생산 최적 조건과 조효소의 특성 vol.42, pp.1, 2012, https://doi.org/10.4014/kjmb.1311.11004
  4. Isolation, Screening, and Identification of Cellulolytic Bacteria from Natural Reserves in the Subtropical Region of China and Optimization of Cellulase Production by Paenibacillus terrae ME27-1 vol.2014, pp.None, 2012, https://doi.org/10.1155/2014/512497
  5. Optimization of carboxymethylcellulase production from Bacillus amyloliquefaciens SS35 vol.4, pp.4, 2012, https://doi.org/10.1007/s13205-013-0169-6
  6. Enhanced Production of Cellulase from Bacillus licheniformis K‐3 with Potential for Saccharification of Rice Straw vol.3, pp.3, 2012, https://doi.org/10.1002/ente.201402137
  7. Characterization of maltotriose production by hydrolyzing of soluble starch with α-amylase from Microbulbifer thermotolerans DAU221 vol.99, pp.9, 2015, https://doi.org/10.1007/s00253-014-6186-5
  8. Production, Optimization, and Characterization of Organic Solvent Tolerant Cellulases from a Lignocellulosic Waste-Degrading Actinobacterium, Promicromonospora sp. VP111 vol.179, pp.5, 2016, https://doi.org/10.1007/s12010-016-2036-5
  9. Identification and characterization of a thermostable endolytic β-agarase Aga2 from a newly isolated marine agarolytic bacteria Cellulophaga omnivescoria W5C vol.40, pp.2, 2018, https://doi.org/10.1016/j.nbt.2017.09.006
  10. Construction of Escherichia coli BL21/A-53 producing histidine-tagged carboxymethylcellulase and comparison of its characteristics with CMCase without histidine-tag vol.49, pp.2, 2012, https://doi.org/10.1080/10826068.2019.1566140
  11. Molecular Characterization of an Endo-β-1,4-Glucanase, CelAJ93, from the Recently Isolated Marine Bacterium, Cellulophaga sp. J9-3 vol.9, pp.19, 2012, https://doi.org/10.3390/app9194061
  12. Enhanced Production of Carboxymethylcellulase by Recombinant Escherichia coli Strain from Rice Bran with Shifts in Optimal Conditions of Aeration Rate and Agitation Speed on a Pilot-Scale vol.9, pp.19, 2019, https://doi.org/10.3390/app9194083