References
- Ballesteros, M., J. M. Oliva, M. J. Negro, P. Manzanares, and J. Ballesteros. 2004. Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SSF) with Kluyveromeces marxianus CECT 10875. Process Biochem. 39: 1843-1848. https://doi.org/10.1016/j.procbio.2003.09.011
- Blumer-Schuette, S. E., I. Kataeva, J. Westpheling, M. W. W. Adams, and R. M. Kelly. 2008. Extremely thermophilic microorganisms for biomass conversion: Status and prospects. Curr. Opin. Biotechnol. 19: 210-217. https://doi.org/10.1016/j.copbio.2008.04.007
- Chuhan, K., U. Trivedi, and K. C. Patel. C. 2006. Application of response surface methodology for optimization of lactic acid production using data juice. J. Microbiol. Biotechnol. 16: 1410-1415.
- Cui, J. D. 2010. Optimization of medium for phenylalanine ammonia lyase production in E. coli using response surface method. Kor. J. Chem. Eng. 27: 174-178. https://doi.org/10.1007/s11814-009-0234-3
-
Emtiazi, G. and I. Nahvi. 2004. Production of thermostable
${\alpha}$ - amylase and cellulase from Cellulomonas sp. J. Microbiol. Biotechnol. 14: 1196-1199. - Golias, H., G. J. Dumsday, G. A. Stanley, and N. B. Pamment. 2000. Characteristics of cellulase preparation affecting the simultaneous saccharification and fermentation of cellulose to ethanol. Biotechnol. Lett. 26: 617-621.
- Hongwen, C., F. Baishan, and H. Zongding. 2005. Optimization of process parameters for key enzymes accumulation of 1,3-propanediol production form Klebsiella pneumoniae. Biochem. Eng. J. 25: 47-53. https://doi.org/10.1016/j.bej.2005.03.011
- Hui, C., X. Xu, and Y. Zhu. 2010. Optimization of hydroxyl radical scavenging activity of exopolysaccharides from Inonotus obliquus in submerged fermentation using response surface method. J. Microbiol. Biotechnol. 20: 835-843.
- Jaleel, C. A., P. Manivannan, G. M. A. Lakshmanan, R. Sridharan, and R. Panneerselvam. 2007. NaCl as a physiological modulator of proline metabolism and antioxidant potential in Phyllanthus amarus. Compt. Rend. Biol. 330: 806-813. https://doi.org/10.1016/j.crvi.2007.08.009
- Jatinder, K., B. S. Chadha, and H. S. Saini. 2006. Optimization of medium components for production of cellulases by Melanocarpus sp. MTCC 3922 under solid-state fermentation. World J. Microbiol. Biotechnol. 22: 15-22. https://doi.org/10.1007/s11274-005-2821-8
- Jin, I. H., D. Y. Jing, C. W. Son, S. K. Kim, W. Gao, C. H. Chung, and J. W. Lee. 2011. Enhanced production of heteropolysaccharide-7 by Beijerinkia indica HS-2001 in repeated batch culture with optimized substitution of culture medium. Biotechnol. Bioprocess Eng. 16: 245-255. https://doi.org/10.1007/s12257-010-0120-1
- Jo, K. I., Y. J. Lee, B. K. Kim, B. H. Lee, C. H. Chung, S. W. Nam, S. K. Kim, and J. W. Lee. 2008. Pilot-scale production of carboxymethylcellulase from rice hull by Bacillus amyloliquefaciens DL-3. Biotechnol. Bioprocess Eng. 13: 182-188. https://doi.org/10.1007/s12257-007-0149-y
- Khan, M. A., R. Hamid, M. Ahmad, M. Z. Abdin, and S. Javed. 2010. Optimization of culture media for enhanced chitinase production from a novel strain of Stenotrophomonas maltophilia using response surface methodology. J. Microbiol. Biotechnol. 20: 1597-1602. https://doi.org/10.4014/jmb.0909.09040
- Khuri, A. I. and J. A. Cornell. 1987. Response Surfaces: Design and Analysis. Marcel Dekker, New York.
- Kim, H. J., Y. J. Lee, W. Gao, C. H. Chung, and J. W. Lee. 2012. Optimization of salts in medium for production of carboxymethylcellulase by a psychrophilic marine bacterium, Psychrobacter aquimaris LBH-10 using two statistical method. Kor. J. Chem. Eng. DOI:10.1007/s11814-011-0192-4.
- Kim, H. J., Y. J. Lee, W. Gao, C. H. Chung, and J. W. Lee. 2011. Statistical optimization for production of cellulases by a psychrophilic marine bacterium, Psychrobacter aquimaris LBH-10 from rice bran using an orthogonal array method. Biotechnol. Bioprocess Eng. 16: 542-548. https://doi.org/10.1007/s12257-010-0457-5
- Kim, B. K., B. H. Lee, Y. J. Lee, I. H. Jin, C. H. Chung, and J. W. Lee. 2009. Purification and characterization of carboxymethylcellulase isolated from a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzyme Microb. Technol. 44: 411-416. https://doi.org/10.1016/j.enzmictec.2009.02.005
- Kumar, S., K. Tamura, and N. Nei. 1993. MEGA: Molecular Evolutionary Genetic Analysis. Version 1.01. The Pennsylvania State University, University Park.
- Latifian, M., Z. Hamidi-Esfahani, and M. Barzegar. 2007. Evaluation of culture conditions for cellulase production by two Trichoderma reesei mutants under solid-state fermentation conditions. Bioresour. Technol. 98: 3634-3637. https://doi.org/10.1016/j.biortech.2006.11.019
- Lee, B. H., B. K. Kim, Y. J. Lee, C. H. Chung, and J. W. Lee. 2010. Industrial scale of optimization for the production of carboxymethylcellulase from rice bran by a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzyme Microb. Technol. 46: 38-42. https://doi.org/10.1016/j.enzmictec.2009.07.009
- Lee, S. M. and Y. M. Koo. 2001. Pilot-scale production of cellulase using Trichoderma reesei Rut C-30 in fed-batch mode. J. Microbiol. Biotechnol. 11: 229-233.
- Lee, Y. J., B. K. Kim, B. H. Lee, K. I. Jo, N. K. Lee, C. H. Chung, Y. C. Lee, and J. W. Lee. 2008. Purification and characterization of cellulase produced by Bacillus amyloliquefaciens DL-3 utilizing rice hull. Bioresour. Technol. 99: 378-386. https://doi.org/10.1016/j.biortech.2006.12.013
- Lee, Y. J., H. J. Kim, W. Gao, C. H. Chung, and J. W. Lee. 2011. Comparison of statistical methods for optimization of salts in the medium for production of carboxymethylcellulase of Bacillus amyloliquefaciens DL-3 by a recombinant E. coli JM109/DL-3. J. Life Sci. 21: 1205-1213. https://doi.org/10.5352/JLS.2011.21.9.1205
- Liu, J., A. J. Lewitus, J. W. Kempton, and S. B. Wilde. 2008. The association of algicidal bacteria and Raphidophyte blooms in South Carolina detention ponds. Harmful Algae 7: 184-193. https://doi.org/10.1016/j.hal.2007.07.001
- Mayende, L., B. S. Wilhemi, and B. I. Pletschke. 2006. Cellulase (CMCase) and polyphenol oxidases from thermophilic Bacillus sp. isolated from compost. Soil Biol. Biochem. 38: 2963-2966. https://doi.org/10.1016/j.soilbio.2006.03.019
- Perepelov, A. V., A. S. Shashkov, S. V. Tomshich, N. A. Komandrova, and O. I. Nedashkovskaya. 2007. A pseudoaminic acid-containing O-specific polysaccharide from a marine bacterium Cellophaga fucicola. Carbohydr. Res. 342: 1378-1381. https://doi.org/10.1016/j.carres.2007.04.001
- Rasmussnen, R. S. and M. T. Morrissey. 2007. Marine biotechnology for production of food ingredients. Adv. Food Nutr. Res. 52: 237-292.
- Roboson, L. M. and G. H. Chambliss. 1989. Cellulases of bacterial origin. Enzyme Microb. Technol. 11: 626-644. https://doi.org/10.1016/0141-0229(89)90001-X
- Ryu, D. D. Y. and M. Mandels. 1980. Cellulase: Biosynthesis and applications. Enzyme Microb. Technol. 2: 91-102. https://doi.org/10.1016/0141-0229(80)90063-0
- Saitous, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
- Senthikumar, S. R., A. Ashokkumar, K. C. Raj, and P. Cunasekraran. 2005. Optimization of medium composition for alkali-stable xylanase production by Aspergillus fischeri Fxn 1 in solid-state fermentation using central composite rotary design. Bioresour. Technol. 96: 1380-1386. https://doi.org/10.1016/j.biortech.2004.11.005
- Sukumaran, R. K., R. R. Singhania, G. M. Mathew, and A. Pandey. 2009. Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bioethanol production. Renew. Energy 34: 421-424. https://doi.org/10.1016/j.renene.2008.05.008
- Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionsspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
- Tomas-Pejo, E., M. Carcia-Aparicio, M. J. Negr, J. M. Oliva, and M. Ballesteros. 2009. Effect of different cellulase dosage on cell viability and ethanol production by Kluyveromyces marxianus in SSF process. Bioresour. Technol. 100: 890-895. https://doi.org/10.1016/j.biortech.2008.07.012
- Wei, G. Y., W. Gao, I. H. Jin, S. Y. Yoo, J. H. Lee, C. H. Chung, and J. W. Lee. 2009. Pretreatment and saccharification of rice hulls for the production of fermentable sugars. Biotechnol. Bioprocess Eng. 14: 828-834. https://doi.org/10.1007/s12257-009-0029-8
- Weisburg, W. G., S. M. Barns, D. A. Pelletire, and D. J. Lane. 1991. 16S ribosomal DNA amplication for phylogenetic study. J. Bacteriol. 173: 697-703.
-
Yi, J. C., J. C. Sandra, A. B. John, and T. C. Shu. 1999. Production and distribution of endoglucanase, cellobiohydrolase, and
$\beta$ -glucosidase components of the cellulolytic system of Volvariella volvacea, the edible straw mushroom. Appl. Environ. Microbiol. 65: 553-559.
Cited by
- Enhanced Biofuel Production from High-Concentration Bioethanol Wastewater by a Newly Isolated Heterotrophic Microalga, Chlorella vulgaris LAM-Q vol.23, pp.10, 2012, https://doi.org/10.4014/jmb.1301.01046
- Enhanced Production of Cellobiase by a Marine Bacterium, Cellulophaga lytica LBH-14, in Pilot-Scaled Bioreactor Using Rice Bran vol.23, pp.4, 2012, https://doi.org/10.5352/jls.2013.23.4.542
- Cellulophaga lytica PKA 1005의 Cellulose 분해 조효소 생산 최적 조건과 조효소의 특성 vol.42, pp.1, 2012, https://doi.org/10.4014/kjmb.1311.11004
- Isolation, Screening, and Identification of Cellulolytic Bacteria from Natural Reserves in the Subtropical Region of China and Optimization of Cellulase Production by Paenibacillus terrae ME27-1 vol.2014, pp.None, 2012, https://doi.org/10.1155/2014/512497
- Optimization of carboxymethylcellulase production from Bacillus amyloliquefaciens SS35 vol.4, pp.4, 2012, https://doi.org/10.1007/s13205-013-0169-6
- Enhanced Production of Cellulase from Bacillus licheniformis K‐3 with Potential for Saccharification of Rice Straw vol.3, pp.3, 2012, https://doi.org/10.1002/ente.201402137
- Characterization of maltotriose production by hydrolyzing of soluble starch with α-amylase from Microbulbifer thermotolerans DAU221 vol.99, pp.9, 2015, https://doi.org/10.1007/s00253-014-6186-5
- Production, Optimization, and Characterization of Organic Solvent Tolerant Cellulases from a Lignocellulosic Waste-Degrading Actinobacterium, Promicromonospora sp. VP111 vol.179, pp.5, 2016, https://doi.org/10.1007/s12010-016-2036-5
- Identification and characterization of a thermostable endolytic β-agarase Aga2 from a newly isolated marine agarolytic bacteria Cellulophaga omnivescoria W5C vol.40, pp.2, 2018, https://doi.org/10.1016/j.nbt.2017.09.006
- Construction of Escherichia coli BL21/A-53 producing histidine-tagged carboxymethylcellulase and comparison of its characteristics with CMCase without histidine-tag vol.49, pp.2, 2012, https://doi.org/10.1080/10826068.2019.1566140
- Molecular Characterization of an Endo-β-1,4-Glucanase, CelAJ93, from the Recently Isolated Marine Bacterium, Cellulophaga sp. J9-3 vol.9, pp.19, 2012, https://doi.org/10.3390/app9194061
- Enhanced Production of Carboxymethylcellulase by Recombinant Escherichia coli Strain from Rice Bran with Shifts in Optimal Conditions of Aeration Rate and Agitation Speed on a Pilot-Scale vol.9, pp.19, 2019, https://doi.org/10.3390/app9194083