Preparation and Characterization of Partially Fluorinated Poly (arylene ether sulfone)/PTFE Composite Membranes for Fuel Cell

연료전지용 부분불소계 Poly (arylene e ther sulfone)/PTFE 복합막의 제조 및 특성 분석

  • Kim, Eun Hee (Green Chemistry and Environmental Biotechnology, University of Science and Technology) ;
  • Chang, Bong-Jun (Resources Separation & Recovery Research Group (RGRRG), Korea Research Institute of Chemical Technology) ;
  • Kim, Jeong-Hoon (Green Chemistry and Environmental Biotechnology, University of Science and Technology)
  • 김은희 (과학기술연합대학원대학교 청정화학 및 생물학과) ;
  • 장봉준 (한국화학연구원 환경자원센터 자원분리회수그룹) ;
  • 김정훈 (과학기술연합대학원대학교 청정화학 및 생물학과)
  • Received : 2012.05.25
  • Accepted : 2012.06.26
  • Published : 2012.06.29

Abstract

New composite membranes were manufactured by impregnating post-sulfonated poly(arylene ether sulfone)s containing perfluorocyclobutane (PFCB) groups into porous polytetrafluoroethylene (PTFE) films. Two kinds of post-sulfonated poly(arylene ether sulfone)s with two different monomer ratios (sulfonable biphenylene monomer : non-sulfonable sulfonyl monomer = 6 : 4, 4 : 6) were first prepared through three synthetic steps: synthesis of trifluorovinylether-terminated monomers, thermal cycloaddition polymerization and post-sulfonation using chlorosulfonic acid (CSA). The composite membranes were then prepared by adjusting the concentrations (5~20 wt%) of the resulting copolymers impregnated in the PTFE films. The water uptake, ion exchange capacity (IEC) and ion conductivity of the composite membranes were characterized and compared with their unreinforced dense membranes and Nafion. All the synthesized compounds, monomers and polymers were characterized by $^1H$-NMR, $^{19}F$-NMR and FT-IR and the composite membranes were observed with scanning electron micrographs (SEM).

불소관능기인 perfluorocyclobutane (PFCB)기를 포함하는 후술폰화 poly (arylene ether sulfone) 랜덤 공중합체를 다공성 Polytetrafluoroethylene (PTFE) 막에 함침시켜 새로운 복합막을 제조하였다. 후술폰화 랜덤 공중합체는 trifluorovinyloxy 그룹을 양말단에 포함하는 biphenyl계와 sulfonyl계 단량체로부터 제조되었는데, biphenyl계와 sulfonyl계의 비율을 6 : 4와 4 : 6으로 조절 후 중부가반응 형태의 열중합과 chlorosulfonic acid (CSA)를 이용한 후술폰화 반응을 통하여 얻어졌다. 이렇게 제조된 랜덤 공중합체의 농도를 달리하면서(5~20 wt%) 다공성 PTFE 막에 함침시켜 복합막을 제조하였고, 이온 교환 능력(IEC), 함수율, 이온전도도를 측정하여 강화되지 않은 랜덤공중합체 및 Nafion과 비교하였다. 제조된 단량체 및 고분자의 구조와 순도는 각각 $^1H$-NMR, $^{19}F$-NMR와 FT-IR를 통하여 확인하였으며, 제조된 복합막의 형태는 SEM으로 관찰하였다.

Keywords

References

  1. M. J. Escudero, E. Hontanon, S. Schwartz, M. Boutonnet, and L. Daza, "Evelopment and performance characterization of new electrocatalysts for PEMFC", J. Power Sources, 106, 206 (2002). https://doi.org/10.1016/S0378-7753(01)01040-0
  2. A. Heinzel and V. M. Barragan, "A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells", J. Power Sources, 84, 70 (1999). https://doi.org/10.1016/S0378-7753(99)00302-X
  3. V. Ramani, H. R. Kunz, and J. M. Fenton, "Investigation of Nafion/HPA composite membranes for high temperature/low relative humidity PEMFC operation", J. Membr. Sci., 232, 31 (2004). https://doi.org/10.1016/j.memsci.2003.11.016
  4. W. Vielstich, A. Lamm, and H. A. Gasteiger, "Handbook of fuel cells", John Wiley & Sons, New York, 595 (2003).
  5. Q. Li, R. He, Q. O. Jensen, and N. J. Bjerrum, "Approaches and recent development of polymer electrolyte membranes for fuel cells operating above $100^{\circ}C$", Chem. Mater., 15, 4896 (2003). https://doi.org/10.1021/cm0310519
  6. K. A. Mauritz and R. B. Moore, "State of understanding of nafion", Chem. Rev., 104, 4535 (2004). https://doi.org/10.1021/cr0207123
  7. B. R. Ezzell, W. P. Carl, and W. A. Mod, US Patent 4,358,412 (1982).
  8. D. J. Connollym and W. F. Gresham, US patent 3,282,875 (1966).
  9. C. Heitner-Wirguin, "Recent advances in perfluorinated ionomer membranes : structure, properties and applications", J. Membr. Sci., 120, 1 (1996). https://doi.org/10.1016/0376-7388(96)00155-X
  10. K. D. Kreuer, "On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells", J. Membr. Sci., 185, 29 (2001). https://doi.org/10.1016/S0376-7388(00)00632-3
  11. O. Savadogo, "Emerging membrane for electrochemical system Part2. High temperature composite membranes for polymer electrolyte fuel cell (PEFC) applications", J. Power Sourece., 127, 135 (2004). https://doi.org/10.1016/j.jpowsour.2003.09.043
  12. B. Smitha, S. Sridhar, and A. A. Khan, "Solid polymer electrolyte membranes for fuel cell applications - a revies". J. Membr. Sci., 259, 10 (2005). https://doi.org/10.1016/j.memsci.2005.01.035
  13. F. Schoberger, M. Hein, and J. Kerres, "Preparation and characterization of sulfonated partially fluorinated statistical polys (arylene ether sulfone) and their blends with PBI", Solid State Ionics, 178, 547 (2007). https://doi.org/10.1016/j.ssi.2007.01.003
  14. N. Y. Arnett, W. L. Harrison, A. S. Badami, A. Roy, O. Lane, F. Cromer, L. Dong, and J. E. McGrath, "Hydrocarbon and partially fluorinated sulfonated copolymer blends as functional membranes for proton exchange membrane fuel cells", J. Power Sources, 172, 20 (2007). https://doi.org/10.1016/j.jpowsour.2007.04.051
  15. Y. Li, A. Roy, A. S. Badami, M. Hill, J. Yang, S. Dunn, and J. E. McGrath, "Synthesis and characterization of partially fluorinated hydrophobic-hydrophillic multiblock copolymers containing sulfonate groups for proton exchange membrane", J. Power Sources, 172, 30 (2007). https://doi.org/10.1016/j.jpowsour.2007.04.046
  16. K. M. Nouel and P. S. Fedkiw, "Nafion(R)-based composite polymer electrolyte membranes", Electrochem. Acta., 43, 2381 (1998). https://doi.org/10.1016/S0013-4686(97)10151-7
  17. O. Savadogo, "Emerging membranes for electrochemical systems : Part II. high temperature composte membranes for polymer electrolyte fuel cell (PEFC) applications", J. Power Soureces, 127, 135 (2004). https://doi.org/10.1016/j.jpowsour.2003.09.043
  18. K. Ramya, G. Velayutham, C. K. Subramaniam, N. Rajalakshmi, and K. S. Dhathathreyan, "Effect of solvents on the characteristics of Nafion(R)/PTFE composite membranes for fuel cell applications", J. Power Sources, 160, 10 (2006). https://doi.org/10.1016/j.jpowsour.2005.12.082
  19. X. Shang, S. Tian, L. Kong, and Y. Meng, "Synthesis and characterization of sulfonated fluorene-containing poly (arylene ether ketone) for proton exchange membrane", J. Membr. Sci., 266, 94 (2005). https://doi.org/10.1016/j.memsci.2005.05.014
  20. D. A. Babb, B. R. Ezzell, K. S. Clement, W. F. Richey, and A. P. Kennedy, "Perfluorocyclobutane aromatic ether polymers", J. Polym. Sci., Part A : Polym. Chem., 31, 3465 (1995).
  21. A. P. Kennedy, D. A. Babb, J. N. Bremmer, and A. J. Pasztor Jr, "Perfluorocyclobutane aromatic ether polymers. II. thermal/oxidative stability and decomposition of a thermoset polymer", J. Polym. Sci. Part A : Polym. Chem., 33, 1859 (1995). https://doi.org/10.1002/pola.1995.080331113
  22. C. Lee, S. Sundar, K. Kwon, and H. S. Han, "Structure-property correlations of sulfonated polyimides. I. Effect of bridging groups on membrane properties", J. Polym. Sci. Part A : Polym. Chem., 42, 3612 (2004). https://doi.org/10.1002/pola.20214
  23. V. Saarinen, T. Kallio, M. Paronen, P. Tikkanen, E. Rauhala, and K. Kontturi, "New ETFE-based membrane for direct methanol fuel cell", Electrochim. Acta., 50, 3453 (2005). https://doi.org/10.1016/j.electacta.2004.12.022