DOI QR코드

DOI QR Code

Research Trends for Nanotoxicity Using Soil Nematode Caenorhabditis elegans

토양선충 Caenorhabditis elegans를 이용한 나노독성 연구동향

  • Kim, Shin Woong (Department of Environmental Science, Konkuk University) ;
  • Lee, Woo-Mi (Department of Environmental Science, Konkuk University) ;
  • An, Youn-Joo (Department of Environmental Science, Konkuk University)
  • Received : 2012.04.24
  • Accepted : 2012.11.30
  • Published : 2012.12.30

Abstract

Caenorhabditis elegans, a free-living nematode mainly found in the soil pore water, roles the critical function in trophic levels, energy flow, and decomposition in soil ecosystem. C. elegans is commonly used species to test soil toxicity. Recently, they are employed broadly as a test organism in nanotoxicology. In this study, a review of the toxicity of nanomaterials for C. elegans was presented based on SCI (E) papers. The nanotoxicity studies using C. elegans have been reported in 20 instances including the mechanism of toxicity. Most studies used K-medium, S-medium, and NGM (Nematode Growth Medium) plate as an exposure medium to test toxicity of nanoparticles. The effects observed include anti aging, phototoxicity, genotoxicity, and dermal effects on C. elegans exposed to nanoparticles. We found that the toxic mechanisms were related with various aspects such as lifespan abnormality, oxidative stress, distribution of particles on inter-organisms, and stress-related gene analysis. C. elegans has advantage to test toxicity of nanoparticles due to various cellular activities, full genome information, and easy observation of transparent body. C. elegans was considered to be a good test species to evaluate the nanotoxicity.

Free-living 선충으로 알려진 Caenorhabditis elegans는 주로 토양 공극수에서 서식하며, 토양 영양단계, 에너지 흐름, 그리고 분해자로서 중요한 역할을 하는 것으로 알려져 있다. 최근 들어, C. elegans는 나노독성연구에 널리 사용되고 있는 추세이다. 본 연구에서는 C. elegans를 이용한 나노독성과 그에 대한 기작에 관련된 선행연구를 조사하였으며, 총 20건의 연구를 확인하였다. 대부분의 연구는 K-medium, S-medium, 그리고 NGM (Nematode Growth Medium) plate를 노출매체로 이용하고 있으며, 나노물질에 노출된 C. elegans로부터 관찰된 영향으로는 노화억제, 광독성영향, 유전독성, 그리고 표피자극 등이 포함되었다. C. elegans를 이용한 독성기작 연구는 개체 생활사 영향 평가, 산화스트레스 영향 평가, 유전독성영향 평가, 나노물질의 생체 내 분포, 그리고 나노물질 특성에 의한 독성영향 평가로 분류할 수 있다. 본 연구에서는 다양한 세포활성, 잘 알려진 유전정보, 그리고 투명한 구조로 인한 나노물질 관찰의 용이성을 바탕으로, C. elegans를 이용한 나노독성연구의 장점을 확인하였다. C. elegans는 나노독성을 평가하기에 적합한 시험종으로 고려되고 있다.

Keywords

Acknowledgement

Supported by : National Research Foundation

References

  1. Oberdörster, G., Maynard, A., Donaldson, K., Castranova, V., Fitzpatrick, J., Ausman, K., Carter, J., Karn, B., Kreyling, W., Lai, D., Olin, S., Monteiro-Riviere, N., Warheit, D. and Yang, H., A report from the ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group. "Principles for characterizing the potential human health effects from exposure to nanomaterials: element
  2. Nel, A., Xia, T., Madler, L. and Li, N., "Toxic potential of materials at the nanolevel," Sci., 311, 622-627(2006). https://doi.org/10.1126/science.1114397
  3. Wienser, M. R., Lowry, G. V., Alarez, P., Dionysiou, D. and Biswas, P., "Assessing the risks of manufactured nanomaterials," Environ Sci Technol., 40, 4336-4337(2006). https://doi.org/10.1021/es062726m
  4. Li, Q., Mahendra, S., Lyon, D. Y., Brunet, L., Liga, M., Li, D. and Alarez, P. J. J., "Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implication," Water Res., 42, 4591-4602(2008). https://doi.org/10.1016/j.watres.2008.08.015
  5. Brenner, S., "The genetics of Caenorhabditis elegans," Genetics, 77, 71-94(1974).
  6. American Society for Testing and Materials (ASTM), "Standard guide for conducting laboratory soil toxicity tests with the nematode Caenorhabditis Elegans," E2172-01(2002).
  7. Wang, H., Wick, R. L. and Xing, B., "Toxicity of nanoparticulate and bulk ZnO, $Al_{2}O_{3}$ and $TiO_{2}$ to the nematode Caenorhabditis elegans," Environ. Pollut., 157, 1171-1177 (2009). https://doi.org/10.1016/j.envpol.2008.11.004
  8. Meyer, J. N., Lord, C. A., Yang, X. Y., Turner, E. A., Badireddy, A. R., Marinakos, S. M., Chilkoti, A., Wiesner, M. R. and Auffan, M., "Intracellular uptake and associated toxicity of silver nanoaprticles in Caenorhabditis elegans," Aqua Toxicol., 100, 140-150(2010). https://doi.org/10.1016/j.aquatox.2010.07.016
  9. Kim, S. W., Nam, S.-H. and An, Y.-J., "Interaction of silver nanoparticles with biological surfaces of Caenorhabditis elegans," Ecotoxicol. Environ. Saf., 77, 64-70(2012). https://doi.org/10.1016/j.ecoenv.2011.10.023
  10. Yang, X., Gondikas, A. P., Marinakos, S. M., Auffan, M., Liu, J., Hsu-Kim, H. and Meyer, J. N., "Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans," Environ. Sci. Technol., 46, 1119-1127(2012). https://doi.org/10.1021/es202417t
  11. Gao, Y., Liu, N., Chen, C., Luo, Y., Li, Y., Zhang, Z., Zhao, Y., Zhao, B., Iida, A. and Chai, Z., "Mapping technique for biodistribution of elements in a model organism. Caenorhabditis elegans, after exposure to copper nanoparticles with microbeam synchrotron radiation X-ray fluorescence," J. Anal. Atom. Spectrom., 23, 1121-1124(2008). https://doi.org/10.1039/b802338g
  12. Mohan, N., Chen, C.-S., Hsieh, H.-H., Wu, Y.-C. and Chang, H.-C., "In vivo imaging and toxicity assessment of fluorescent nanodiamonds in Caenorhabditis elegans," Nano Lett., 10, 3692-3699(2010). https://doi.org/10.1021/nl1021909
  13. Qu, Y., Li, W., Zhou, Y., Liu, X., Zhang, L., Wang, L., Li, Y., Iida, A., Tang, Z., Zhao, Y., Chai, Z. and Chen, C., "Full assessments of fate and physiological behavior of Quantum Dots utilizing Caenorhabditis elegans as a model organism," Nano Lett., 11, 374-3783(2011).
  14. Kattel, K., Park, J, Y, Xu, W,. Kim, H. G., Lee, E. J., Bony, B. A., Heo, W, C., Chang, Y., Kim, T. J., Do, J, Y., Chae, K. S., Kwak, Y, W. and Lee, G. H., "Water-soluble ultrasmall $Eu_{2}O_{3}$ nanoparticles as a fluorescent imaging agent: In vitro and in vivo studies," Colloids Surf. A: Phys. Eng. Aspects, 394, 85-91(2012). https://doi.org/10.1016/j.colsurfa.2011.11.032
  15. Kim, J., Takahashi, M., Shimizu, T., Shirasawa, T., Kajita, M., Kanayama, A. and Miyamoto, Y., "Effects of a potent antioxidant, platinum nanoparticle, on the lifespan of Caenorhabditis elegans," Mech Ageing Dev., 129, 322-331(2008). https://doi.org/10.1016/j.mad.2008.02.011
  16. Kim, J., Shirasawa, T. and Miyamoto, Y., "The effect of TAT conjugated platinum nanoparticles on lifespan in a nematode Caenorhabditis elegans model," Biomater., 31, 5849-5854(2010). https://doi.org/10.1016/j.biomaterials.2010.03.077
  17. Ma, H., Kabengi, N. J., Bertsch, P. M., Unrine, J. M., Glenn, T. C. and Williams, P. L., "Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: The importance of illumination mode and primary particle size," Environ. Pollut., 159, 1473-1480 (2011). https://doi.org/10.1016/j.envpol.2011.03.013
  18. Ma, H., Bertsch, P. M., Glenn, T. C., Kabengi, N. J. and Williams, P. L., "Toxicity of manufactured zinc oxide nanoparticles in the nematode Caenorhabditis elegans," Environ. Toxicol. Chem., 28, 1324-1330(2009). https://doi.org/10.1897/08-262.1
  19. Pluskota, A., Horzowski, E., Bossinger, O. and von Mikecz, A., "In Caenorhabditis elegans nanoparticle-bio-interactions become transparent: Silica-nanoparticles induce reproductive senescence," PLoS One, 4, e6622(2009). https://doi.org/10.1371/journal.pone.0006622
  20. Zhang, H., He, X., Zhang, Z., Zhang, P., Li, Y., Ma, Y., Yashu, K., Zhao, Y. and Chai, Z., "Nano-$CeO_2$ exhibits adverse effects at environmental relevant concentration," Environ. Sci. Technol., 45, 3725-3730(2011). https://doi.org/10.1021/es103309n
  21. Roh, J.-Y., Sim, S. J., Yi, J., Park, K., Chung, K. H., Ryu, D-Y. and Choi, J., "Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional Ecotoxicogenomics," Environ. Sci. Technol., 43, 3933-3940(2009). https://doi.org/10.1021/es803477u
  22. Roh, J.-Y., Park, Y.-K., Park, K. and Choi, J., "Ecotoxicological investigation of $CeO_{2}$ and $TiO_{2}$ nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility,, and survival as endpoints," Environ. Toxicol. Pharmacol., 29, 167-172(2010). https://doi.org/10.1016/j.etap.2009.12.003
  23. Cha, Y. J., Lee, J. and Choi, S. S., "Apoptosis-mediated in vivo toxicity of hydroxylated fullerene nanoparticles in soil nematode Caenorhabditis elegans," Chemosphere, 87, 49-54 (2012). https://doi.org/10.1016/j.chemosphere.2011.11.054
  24. Lim, D., Roh, J.-Y., Eom, H.-J., Choi, J.-Y., Hyun, J. and Choi, J., "Oxidative stress-related PMK-1 P38 MAPK activation as a mechanism for toxicity of silver nanoparticles to reproduction in the nematode Caenorhabditis elegans," Environ. Toxicol., DOI:10.1002/etc.1706(2012).
  25. Zhang, Y., Chen, D., Smith, M. A., Zhang, B. and Pan, X., "Selection of reliable reference genes in Caenorhabditis elegans for analysis of nanotoxicity," PLoS One, 7, e31849 (2012). https://doi.org/10.1371/journal.pone.0031849
  26. Wu, S., Lu, J., Rui, Q., Yu, S., Cai, T. and Wang, D., "Aluminum nanoparticles exposure in L1 larvae results in more severe lethality toxicity than in L4 larvae or young adults by strengthening the formation of stress response and intes tinal lipofuscin accumulation in nematodes," Environ. Toxicol. Pharmacol., 31, 179-188(2011). https://doi.org/10.1016/j.etap.2010.10.005
  27. Schafer, W. R, Egg-laying WormBook, 14, 1-7(2005)
  28. Hope, I. A., C. elegans, A Practical Approach, Oxford university press(1999).
  29. Mosser, T., Matic, I. and Leroy, M. "Bacterium-induced internal egg hatching frequency is predictive of life span in Caenorhabditis elegans populations," Appl. Environ. Microbiol., 77, 8189-8192(2011). https://doi.org/10.1128/AEM.06357-11
  30. Riddle, D. L. T., Blumenthal, B. J., Meyer, and J. R. Priess (ed.). C. elegans II. Cold Spring Harbor Laboratory Press, Plainview, NY. 23(1997).
  31. Shook, D. R. and Johnson, T. E., "Quantitative trait loci affecting survival and fertility-related traits in Caenorhabditis elegans show genotype-environment interactions," Pleiotropy and Epistasis. Genetics, 153, 1233-1243(1999).
  32. Chu, K. W. and Chow, K. L., "Synergistic toxicity of multiple heavy metals is revealed by a biological assay using a nematode and its transgenic derivate," Aquat. Toxicol., 61, 53-54(2002). https://doi.org/10.1016/S0166-445X(02)00017-6
  33. Shen, L.-L., Xiao, J., Ye, H.-Y. and Wang, D.-Y., "Toxicity evaluation in nematode Caenorhabditis elegans after chronic metal exposure," Environ. Toxicol. Pharmacol., 28, 125-132 (2009). https://doi.org/10.1016/j.etap.2009.03.009
  34. Benabbou, A. K., Derriche, Z., Felix, C., Lejeune, P. and Guillard, C., "Photocatalytic inactivation of Escherischia coli Effect of concentration of $TiO_{2}$ and microorganism, nature, and intensity of UV irradiation," Appl. Catal. B-Environ., 76, 257-263(2007). https://doi.org/10.1016/j.apcatb.2007.05.026
  35. Brunet, L., Lyon, D. Y., Hotze, E. M., Alvarez, P. J. J. and Wiesner, M. R., "Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles," Environ. Sci. Technol., 43, 4355-4360(2009). https://doi.org/10.1021/es803093t
  36. Power, K. W., Brown, S. C., Krishna, V. B., Wasdo, S. C., Moudgil, B. M. and Roberts, S. M., "Research strategies for safety evaluation of nanomaterial. Part VI. Characterization of nanoscale particles for toxicological evaluation," Toxicol. Sci., 90, 296-303(2006).