DOI QR코드

DOI QR Code

시설농업부산물의 잠재메탄발생량 평가 및 사일로 저장에 따른 메탄 발생 변화

Biochemical Methane Potential of Agricultural Residues and Influence of Ensiling on Methane Production

  • 이유진 (서울대학교 공과대학 건설환경공학부) ;
  • 조한상 (동부제철 기술연구소) ;
  • 김재영 (서울대학교 공과대학 건설환경공학부) ;
  • 강준구 (국립환경과학원 환경자원연구부 폐자원에너지연구과) ;
  • 이성수 (국립환경과학원 환경자원연구부 폐자원에너지연구과) ;
  • 김규연 (국립환경과학원 환경자원연구부 폐자원에너지연구과)
  • Lee, Yu Jin (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Cho, Han Sang (Dongbu Steel Technical Research Laboratories) ;
  • Kim, Jae Young (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Kang, Jungu (Waste-to-Energy Research Division, Environmental Resources Research Department, National Institute of Environmental Research) ;
  • Rhee, Sungsu (Waste-to-Energy Research Division, Environmental Resources Research Department, National Institute of Environmental Research) ;
  • Kim, Kyuyeon (Waste-to-Energy Research Division, Environmental Resources Research Department, National Institute of Environmental Research)
  • 투고 : 2012.09.04
  • 심사 : 2012.11.26
  • 발행 : 2012.11.30

초록

본 연구에서는 BMP (Biochemical Methane Potential) test를 통해 얼갈이배추, 딸기, 토마토, 오이, 참외 시설농업부산물의 잠재메탄발생량을 조사하였다. 또한, 시설농업부산물을 사일로에 저장하고 저장 전후의 잠재메탄발생량을 비교하여 사일리지 저장기술이 메탄 생산에 미치는 영향을 분석하였다. 대상 시료의 잠재메탄발생량과 생분해도는 각각 149~286 mL-$CH_4/g$-VS, 27~48%(by vol.)의 범위를 나타내었으며 메탄발생량은 얼갈이배추 > 참외 > 딸기 ${\approx}$ 오이 > 토마토 순으로 조사되었다. 사일로 저장 후, 원시료와 비교하였을 때 VS 기준 메탄발생량이 -11~36%(by vol.) 증감하여 시료 별로 상이한 결과를 보였다. 저장기간 중 유기산 증가, 섬유소 분해로 메탄발생량이 증가하고 화학 성분의 변화, 암모니아 저해로 메탄발생량이 감소한 것으로 판단된다.

In this study, the biochemical methane potentials of different agricultural residues produced from agricultural plastic greenhouse were determined. Additionally, ensiling storage practice was applied on agricultural residues for its effect on biogas production. Agricultural residues of cabbage, strawberry, tomato, cucumber, and oriental melon were selected as sample. The methane potential and biodegradability of agricultural residues ranged from 149~286 mL-$CH_4/g$-VS, 27~48% (by vol.), respectively and methane production was in order of cabbage > oriental melon > strawberry ${\approx}$ cucumber > tomato. Ensiling caused difference in methane production in a range of -11~36% (by vol.) per VS compared with raw material. An increase in methane potential was presumably linked to the organic acid accumulation, cellulose degradation and decrease in methane potential was due to chemical composition change, ammonia accumulation during the storage process.

키워드

참고문헌

  1. 허남효, "유기성폐기물의 바이오가스화 기술 및 현황," 태양에너지, 4(1), 9-25(2005).
  2. 한국환경공단, "저탄소 녹색마을 시범모델 개발연구 보고서," (2010).
  3. Lee, Y. J., Cho, H. S. and Kim, J. Y., "Estimation of agricultural residues generation and their potential methane production," Proceedings of International Solid Waste Association World Congress, ISWA, Florence, Italy, (2012).
  4. 통계청, "농작물 생산통계," (2009).
  5. Rincon, B., Banks, C. J. and Heaven, S., "Biochemical methane production of winter wheat (Triticum aestivum L.): Influence of growth stage and storage practice," Bioresour. Technol., 101, 8179-8184(2010). https://doi.org/10.1016/j.biortech.2010.06.039
  6. Kaparaju, P. and Rintala, J., "Anaerobic co-digestion potato tuber and its industrial by-products with pig manure," Resour. Conservation and Recycling, 175-188(2005).
  7. Gunasselan, V. N., "Biochemical methane potential of fruit and vegetable solid waste feedstocks," Biomass and Bioenergy, 26, 389-399(2004). https://doi.org/10.1016/j.biombioe.2003.08.006
  8. Egg, R. P., Coble, C. G., Engler, C. R. and Lewis, D. H., "Feedstock storage, handling and processing," Biomass and Bioenergy, 5, 71-94(2010).
  9. Pakarinen, O., Lehtomaki, A., Rissanen, S. and Rintala, J., "Storing energy crops for methane production: Effects of solids content and biological additive," Bioresour. Technol., 99, 7074-7082(2008). https://doi.org/10.1016/j.biortech.2008.01.007
  10. Alli, I. and Baker, B. E., "Studies on the fermentation of chopped sugarcane," Animal Feed Sci. Technol., 7, 411-417(1982). https://doi.org/10.1016/0377-8401(82)90010-4
  11. McEniry, J., O'Kiely, P. and Clipson, N. J. W., "The microbiological and chemical composition of silage made from unchopped and precision-chopped herbage in laboratory silos," Grass Forage Sci., 63, 407-420(2008). https://doi.org/10.1111/j.1365-2494.2008.00645.x
  12. Sun, Z. H., Liu, S. M. and Tayo, G. O., "Effects of cellulose or lactic acid bacteria on silage fermentation and in vitro gas production of several morphological fractions of maize stover," Animal Feed Sci. Technol., 152, 219-231(2009). https://doi.org/10.1016/j.anifeedsci.2009.04.013
  13. Taylor, C. C., Ranjit, N. J. and Mills, J. A., "The effect of treating whole-plant barely with Lactobacillus buchneri 40788 on silage fermentation, aerobic stability and nutritive value for dairy cows," J. Dairy Sci., 85, 1793-1800(2002). https://doi.org/10.3168/jds.S0022-0302(02)74253-7
  14. 환경부, "폐기물공정시험방법," (2007).
  15. 최기춘, 조남철, 정민웅, 김종근, 신재순, 이경동, 김영철, 김원호, 오영균, 김천만, 김혁기, 한동배, "소형 사각 곤포기를 이용한 옥수수 사각 압축곤포 사일리지 조제에 관한 연구," 한국초지조사료학회지, 31(1), 75-84(2011).
  16. Shelton, D. R. and Teidje, J. M., "General method for determining anaerobic biodegradation potential," Appl. Enviorn. Microbiol., 850-857(1984).
  17. 김민지, "BMP test에서 실험조건들이 글루코스의 메탄 발생에 미치는 영향," 서울대학교 대학원 건설환경공학부 석사학위논문(2007).
  18. Tchobanoglous, G., Theisen, H. and Vigil, S., "Integrated Solid Waste Management," McGraw-Hill, NY(1993).
  19. 지식경제부 기술표준원, "수질-분해 슬러지에서 유기화합물의 최종혐기성 생분해도에 대한 평가(바이오 기체 생산량 측정방법)," (2008).
  20. 신항식, 문민주, 송영채, 배영욱, "생분해도 실험에 의한 주방폐기물의 혐기성소화 타당성 연구," 한국폐기물자원순환학회지, 10(1), 35-42(1993).
  21. Cho, J. K. and Park, S. C., "BMP and anaerobic digestion of food wastes," Bioresour. Technol., 52(3), 245-253(1995). https://doi.org/10.1016/0960-8524(95)00031-9
  22. 송재홍, 김석구, 이준기, 고태훈, 이태윤, "BMP (Biochemical Methane Potential) test를 통한 도심하천 퇴적물의 최종메탄발생수율 및 생분해도 산정," 한국지반환경공학회논문집, 11(2), 33-42(2010).
  23. Triolo, J. M., Pedersen, L., Qu, H. and Sommer, S. G., "Biochemical methane potential and anaerobic biodegradability of non-herbaceous and and herbaceous phytomass in biogas production," Bioresour. Technol., 125, 226-232(2012). https://doi.org/10.1016/j.biortech.2012.08.079
  24. 신국진, 김창현, 이상은, 윤영만, "국내 주요 시설채소 부산물의 메탄 생산 퍼텐셜," 한국토양비료학회지, 44(6), 1252-1257(2011).
  25. Macias-Corrala, M., Samania, Z., Hansona, A., Smith, G., Funk, P., Yu, H. and Longworth, J., "Anaerobic digestion of municipal solid waste and agricultural waste and effect of co-digestion with dairy cow manure," Bioresour. Technol., 99, 8288-8293(2008). https://doi.org/10.1016/j.biortech.2008.03.057
  26. 이성수, 강준구, 김규연, 전아현, 차준석, 오길종, "고추와 피망 농업부산물의 혐기소화에 의한 바이오가스 및 전력 생산량 예측," 한국폐기물자원순환학회지, 29(1), 28-36 (2012).
  27. Neureiter, M., Santos, J. T. P., Lopez, C. P., Pichler, H., Kirchmayr, R. and Braun, R., "Effect of silage preparation on methane yields from whole crop maize silages," Int. Symposium on Anaerobic Digestion of Solid Waste, 4, 109-115 (2005).
  28. Herrmann, C., Heiermann M. and Idler, C., "Effects of ensiling silage additives and storage period on methane formation of biogas crops," Bioresour. Technol., 102, 5153-5161 (2011). https://doi.org/10.1016/j.biortech.2011.01.012
  29. Vervaeren, H., Hostyn, K., Ghekiere, G. and Willems, B., "Biological ensilage additives as pretreatment for maize to increase the biogas production," Renewable Energy, 35, 2089-2093(2010). https://doi.org/10.1016/j.renene.2010.02.010