DOI QR코드

DOI QR Code

미생물연료전지의 성능향상을 위한 하이드로젤 및 다중벽 탄소나노튜브를 이용한 산화전극의 표면개질

Modification of Anode Surface with Hydrogel and Multiwall Carbon Nanotube for High Performance of Microbial Fuel Cells

  • 송영채 (한국해양대학교 환경공학과) ;
  • 김대섭 (한국해양대학교 환경공학과) ;
  • 우정희 (한국해양대학교 환경공학과) ;
  • 유규선 (전주대학교 토목환경공학과) ;
  • 정재우 (경남과학기술대학교 환경공학과) ;
  • 이채영 (수원대학교 토목공학과)
  • Song, Young-Chae (Department of Environmental Engineering, Korea Maritime University) ;
  • Kim, Dae-Sup (Department of Environmental Engineering, Korea Maritime University) ;
  • Woo, Jung-Hui (Department of Environmental Engineering, Korea Maritime University) ;
  • Yoo, Kyuseon (Department of Civil and Environmental Engineering, Jeonju University) ;
  • Chung, Jae-Woo (Department of Environmental Engineering, Kyeongnam University of Science and Technology) ;
  • Lee, Chae-Young (Department of Civil Engineering, The University of Suwon)
  • 투고 : 2012.03.12
  • 심사 : 2012.11.26
  • 발행 : 2012.11.30

초록

본 연구에서는 흑연섬유직물로 이루어진 산화전극의 표면을 하이드로젤 및 하이드로젤과 다중벽탄소나노튜브 복합체를 이용하여 표면을 개질하였다. 개질된 산화전극이 미생물연료전지의 성능향상에 미치는 영향을 회분식 시스템을 이용하여 평가하였으며, 개질하지 않은 흑연섬유직물 및 흑연펠트 산화전극과 비교하였다. 미생물연료전지의 전력밀도는 산화전극 및 환원전극의 성능에 크게 영향을 받았다. 최대전력밀도는 하이드로젤과 다중벽탄소나노튜브 복합체로 흑연섬유직물 표면을 개질한 산화전극을 사용한 경우 $1,162mW/m^2$로서 표면개질을 하지 않은 흑연섬유직물 산환전극을 사용한 미생물연료전지에 비하여 27.7% 향상되었다. 산화전극 표면을 개질에 사용된 하이드로젤과 다중벽탄소나노튜브 복합체는 산화전극 표면의 생물친화도와 전도성을 증가시키고 활성화저항을 크게 감소시킬 수 있는 우수한 표면개질제로 평가되었다.

The surface of graphite fiber fabric anode was modified with a hydrogel and a mixture of hydrogel and multiwall carbon nanotube, and their effectiveness were compared to the unmodified anodes in a batch microbial fuel cell (microbial fuel cells). The maximum power density of the MFC was determined by both performance of the anode and cathode. The maximum power density for the MFC with the anode modified with the mixture of hydrogel and multiwall carbon nanotube was $1,162mW/m^2$ which was 27.7% higher than that with the unmodified graphite fiber fabric anode. "The mixture of hydrogel and multiwall carbon nanotube is a good surface modifier for anode with high biological affinity and low activation losses."

키워드

참고문헌

  1. Song, Y. C., Woo, J. H., Yoo, K. S., Chung, J. W. and Lee, C. Y., "Recent progress of microbial fuel cells: materials for electrodes," The proceeding of the 2nd International Conference on Challenges in Biotechnology and Food Technology (ICBF-2011), Annamalai University, India, pp.1-2(2011)
  2. Logan, B. E., Hamelers, B., Rozendal, R., Schroder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W. and Rabaey, K. "Microbial Fuel Cells: Methodology and Technology," Environ. Sci Technol., 40(17), 5181-5192(2006) https://doi.org/10.1021/es0605016
  3. Rabaey, K. and Verstraete, W., "Microbial fuel cells: novel biotechnology for energy generation," Trends in Biotechnol., 23(6), 291-298(2005) https://doi.org/10.1016/j.tibtech.2005.04.008
  4. Kim, B. H., Chang, I. S. and Gadd, G. M., "Challenges in microbial fuel cell development and operation," Appl. Microbiol. Biotechnol., 76, 485-494(2007) https://doi.org/10.1007/s00253-007-1027-4
  5. Song, Y. C., Yoo, K. S. and Lee, S. K., "Surface floating, air cathode, microbial fuel cell with horizontal flow for continuous power production from wastewater," J. Power Sour., 195, 6478-6482(2010) https://doi.org/10.1016/j.jpowsour.2010.04.041
  6. Logan, B. E., Cheng, S., Watson, V. and Estadt, G., "Graphite Fiber Brush Anodes for Increased Power Production in Air-Cathode Microbial Fuel Cells," Environ. Sci. Technol., 41, 3341-3346(2007) https://doi.org/10.1021/es062644y
  7. Scott, K., Cotlarciuc, I., Hall, D., Lakeman, J. B. and Browning, D. K., "Power from marine sediment fuel cells: the influence of anode material," J. Appl. Electrochem., 38, 1313- 1319(2008) https://doi.org/10.1007/s10800-008-9561-z
  8. Sharma, T., Reddy, L. M. A., Chandra, T. S. and Ramaprabhu, S. T., "Development of carbon nanotubes and nanofluids based microbial fuel cell," Int. J. Hydrogen Energy, 33, 6749-6754(2008) https://doi.org/10.1016/j.ijhydene.2008.05.112
  9. Liu, H., Cheng, S., Huang, L. and Logan, B. E., "Scale-up of membrane-free single-chamber microbial fuel cells," J. Power Sour., 179, 274-279(2008) https://doi.org/10.1016/j.jpowsour.2007.12.120
  10. Wang, X., Cheng, S. A., Feng, Y. J., Merrill, M. D., Saito, T. and Logan, B. E., "Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells," Environ. Sci. Technol. 43, 6870-6874(2009) https://doi.org/10.1021/es900997w
  11. Di Lorenzo, M., Scott, K., Curtis, T. P., Head, I. M., "Effect of increasing anode surface area on the performance of a single chamber microbial fuel cell," Chem. Eng. J., 156, 40-48(2010) https://doi.org/10.1016/j.cej.2009.09.031
  12. Cercado-Quezada, B., Delia, M. L., Bergel, A., "Electrochemical micro-structuring of graphite felt electrodes for accelerated formation of electroactive biofilms on microbial anodes," Electrochem. Communications, 13, 440-443(2011) https://doi.org/10.1016/j.elecom.2011.02.015
  13. Miyata, T., Uragami, T. and Nakamae, K., "Biomolecule-sensitive hydrogels," Adv. Drug Delivery Rev., 54, 79-98(2002) https://doi.org/10.1016/S0169-409X(01)00241-1
  14. Madhumathi, K., Shalumon, K. T., Divya Rani, V. V., Tamura, H., Furuike, T., Selvamurugan, N., Nair, S. V. and Jayakumar, R., "Wet chemical synthesis of chitosan hydrogelhydroxyapatite composite membranes for tissue engineering applications," Int. J. Biol. Macromolecules, 45, 12-15(2009) https://doi.org/10.1016/j.ijbiomac.2009.03.011
  15. Higgins, S. R., Foerster, D., Cheung, A., Lau, C., Bretschger, O., Minteer, S. D., Nealson, K., Atanassov, P. and Cooney, M. J., "Fabrication of macroporous chitosan scaffolds doped with carbon nanotubes and their characterization in microbial fuel cell operation," Enzyme Microb. Technol., 48, 458-465 (2011) https://doi.org/10.1016/j.enzmictec.2011.02.006
  16. Ajayan, P. M. and Zhou, O. Z., "Carbon Nanotubes, Topics Appl. Phys.," Springer, 80, 391-425(2001) https://doi.org/10.1007/3-540-39947-X_14
  17. Al-Saleh, M. H. and Sundararaj, U., "A review of vapor grown carbon nanofiber/polymer conductive composites," Carbon, 47(1), 2-22(2009) https://doi.org/10.1016/j.carbon.2008.09.039
  18. Carabineiro, S. A. C., Pereira, M. F. R., Nunes Pereira, J., Caparros, C., Sencadas, V. and Lanceros-Mendez, S., "Effect of the carbon nanotube surface characteristics on the conductivity and dielectric constant of carbon nanotube/poly(vinylidene fluoride) composites," Nanoscale Res. Lett., 6(302), 1-5(2011)
  19. Huang, W. Z., Zhang, X. B., Tu, J. P., Kong, F. Z., Ma, J. X., Liu, F., Lu, H. M. and Chen, C. P., "The effect of pretreatments on hydrogen adsorption of multi-walled carbon nanotubes," Mater. Chem. Phys., 78(1), 144-148(2003) https://doi.org/10.1016/S0254-0584(02)00305-X
  20. Lin, J., Tang, Q. and Wu, J., "The synthesis and electrical conductivity of a polyacrylamide/Cu conducting hydrogel," Reac. Functional Polym., 67, 489-494(2007) https://doi.org/10.1016/j.reactfunctpolym.2007.02.002
  21. Feng, Y., Yang, Q., Wang, X. and Logan, B. E., "Treatment of carbon fiber brush anodes for improving power generation in air-cathode microbial fuel cells," J. Power Sour., 195, 1841-1844(2010) https://doi.org/10.1016/j.jpowsour.2009.10.030
  22. Haji, S., "Analytical modeling of PEM fuel cell i-V curve," Renewable Energy, 36, 451-458(2011) https://doi.org/10.1016/j.renene.2010.07.007
  23. You, S. Y., Park, Y. H. and Park, C. R., "Preparation and properties of activated carbon fabric from acrylic fabric waste," Carbon, 38, 1453-1460(2000) https://doi.org/10.1016/S0008-6223(99)00278-X
  24. Li, P., Li, T., Zhou, J. H., Sui, Z. J., Dai, Y. C., Yuan, W. K. and Chen, D., "Synthesis of carbon nanofiber/graphite-felt composite as a catalyst," Micro. Meso. Mater., 95, 1-7(2006) https://doi.org/10.1016/j.micromeso.2006.04.014
  25. Trevors, J. T. and Pollack, G. H., "Hypothesis: the origin of life in a hydrogel environment," Prog. Biophys. Molecular Biol., 89, 1-8(2005) https://doi.org/10.1016/j.pbiomolbio.2004.07.003