DOI QR코드

DOI QR Code

생물전기화학시스템을 이용한 염화에틸렌의 생물학적 탈염소화

Biological Dechlorination of Chlorinated Ethylenes by Using Bioelectrochemical System

  • 유재철 (부산대학교 사회환경시스템공학부) ;
  • 박영현 (부산대학교 사회환경시스템공학부) ;
  • 선지윤 (부산대학교 사회환경시스템공학부) ;
  • 홍성숙 (부산대학교 사회환경시스템공학부) ;
  • 조순자 (부산대학교 사회환경시스템공학부) ;
  • 이태호 (부산대학교 사회환경시스템공학부)
  • Yu, Jaecheul (School of Civil and Environmental Engineering, Pusan National University) ;
  • Park, Younghyun (School of Civil and Environmental Engineering, Pusan National University) ;
  • Seon, Jiyun (School of Civil and Environmental Engineering, Pusan National University) ;
  • Hong, Seongsuk (School of Civil and Environmental Engineering, Pusan National University) ;
  • Cho, Sunja (School of Civil and Environmental Engineering, Pusan National University) ;
  • Lee, Taeho (School of Civil and Environmental Engineering, Pusan National University)
  • 투고 : 2012.04.17
  • 심사 : 2012.05.29
  • 발행 : 2012.05.30

초록

산업용제로 널리 이용되고 있는 PCE (Perchloroethylene)나 TCE (Trichloroethylene)와 같은 염화에틸렌화합물은 안정된 세정력을 가지고 있어 널리 이용되고 있지만 무분별한 사용과 부주의한 취급으로 인해 최근 토양 및 지하수 오염지역이 늘어나고 있다. 본 연구에서는 퇴적토, 슬러지, 토양, 지하수 등 다양한 지역에서 총 10개의 시료를 식종원으로 이용하여 생물학적 PCE 탈염소화 가능성을 평가하고, 가장 우수한 탈염소화 능력을 보인 낙동강 퇴적토 시료를 대상으로 PCE를 에틸렌까지 안정적으로 탈염소화 가능한 혼합미생물을 농화배양하였다. 농화배양된 탈염소화 미생물을 생물전기화학시스템(Bioelectrochemical System, BES)의 환원부에 식종하여 전극을 전자공급원으로 이용한 탈염소화 가능성을 평가한 결과, PCE가 TCE, cis-dichloroethylene, vinyl chloride를 거쳐 최종산물인 에틸렌으로 탈염소화됨을 확인할 수 있었다. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE)를 이용한 미생물군집 분석결과, 농화배양액에서 구축된 탈염소 미생물 군집과 BES 환원전극부내 미생물 군집 구조는 다르게 나타났으며, 전기화학적 활성을 지닌 다양한 미생물이 존재함을 확인할 수 있었다. BES 환원전극부에서 부유성장하는 미생물과 전극에 생물막을 형성하는 미생물 군집구조에도 큰 차이가 있었으며, 이는 탈염소화 메커니즘의 차이에 기인하는 것으로 판단된다. 추가적인 연구를 통해서 자세한 생물전기화학적 탈염소화 메커니즘을 밝혀낸다면 생물전기화학적 탈염소화 기술은 염화에틸렌 오염 토양/지하수의 획기적인 생물정화기술로 자리잡게 될 것이다.

Chlorinated ethylenes such as perchloroethylene (PCE) and trichloroethylene (TCE) are widely used as industrial solvents and degreasing agents. Because of improper handling, these highly toxic chlorinated ethylenes have been often detected from contaminated soils and groundwater. Biological PCE dechlorination activities were tested in bacterial cultures inoculated with 10 different environmental samples from sediments, sludges, soils, and groundwater. Of these, the sediment using culture (SE 2) was selected and used for establishing an efficient PCE dechlorinating enrichment culture since it showed the highest activity of dechlorination. The cathode chamber of bioelectrochemical system (BES) was inoculated with the enrichment culture and the system with a cathode polarized at -500 mV (Vs Ag/AgCl) was operated under fed-batch mode. PCE was dechlorinated to ethylene via TCE, cis-dichloroethylene, and vinyl chloride. Microbial community analysis with polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) showed that the microbial community in the enrichment culture was significantly changed during the bio-electrochemical PCE dechlorination in the BES. The communities of suspended-growth bacteria and attached-growth bacteria on the cathode surface are also quite different from each other, indicating that there were some differences in their mechanisms receiving electrons from electrode for PCE dechlorination. Further detailed research to investigate electron transfer mechanism would make the bioelctrochemical dechlorination technique greatly useful for bioremediation of soil and groundwater contaminated with chlorinated ethylenes.

키워드

과제정보

연구 과제 주관 기관 : 한국연구재단

참고문헌

  1. 환경부, "2008년 지하수 수질측정망 운영결과," 환경부(2009).
  2. Hendrickson, E. R., Payne, J. A., Young, R. M., Starr, M. G., Perry, M. P., Fahnestock, S., Ellis, D. E. and Ebersole, R. C., "Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout north America and Europe," Appl. Environ. Microbiol., 68(2), 485(2002). https://doi.org/10.1128/AEM.68.2.485-495.2002
  3. Maymo-Gatell, X., Chien, Y., Gossett, J. M. and Zinder, S. H., "Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene," Sci., 276(5318), 1568(1997). https://doi.org/10.1126/science.276.5318.1568
  4. Aulenta, F., Gossett, J. M., Papini, M. P., Rossetti, S. and Majone, M., "Comparative study of methanol, butyrate, and hydrogen as electron donors for long-term dechlorination of tetrachloroethene in mixed anerobic cultures," Biotechnol. Bioeng., 91(6), 743-753(2005). https://doi.org/10.1002/bit.20569
  5. Aulenta, F., Cateri, A., Majone, M., Panero, S., Reale, P. and Rossett, S., "Electron transfer from a solid-state electrode assisted by methyl violegen sustains efficient microbial reductive dechlorination of TCE," Environ. Sci. Technol., 41, 2554-2559(2007). https://doi.org/10.1021/es0624321
  6. Aulenta, F., Reale, P., Canosa, A., Rossetti, S., Panero, S. and Majone, M., "Characterization of an electro-active biocathode capable of dechlorinating trichloroethene and cisdichloroethene to ethene," Biosens. Bioelectron., 25(7), 1796-1802(2010). https://doi.org/10.1016/j.bios.2009.12.033
  7. Yu, J., Kim, D. and Lee, T., "Microbial diversity in biofilm on water distribution pipes of different materials," Water Sci. Technol.. 61, 163-171(2010). https://doi.org/10.2166/wst.2010.813
  8. Yu, J., Cho, S., Kim, S., Cho, H. and Lee, T., "Comparison of exoelectrogenic bacteria detected by using two different methods: U-tube microbial fuel cell and plating method," Microb. Environ., 27(1), 49-53(2012). https://doi.org/10.1264/jsme2.ME11205
  9. Rabaey, K., Read, S. T., Clauwaert, P., Freguia, S., Bond, P. L., Blackall, L. L. and Keller, J., "Cathodic oxygen reduction catalyzed by bacteria in micrbial fuel cells" ISME J., 2, 519-527(2008). https://doi.org/10.1038/ismej.2008.1
  10. Freguia, S., Tsujimura, S. and Kano, K., "Electron transfer pathways in microbial oxygen biocathodes." Electronchim. Acta, 55, 813-818(2010). https://doi.org/10.1016/j.electacta.2009.09.027
  11. Logan, B. E. "Exoelectrogenic bacteria that power microbial fuel cells," Nature Rev., 7, 375-381(2009).
  12. Weisburg, W. G., Barns, S. M., Pelletier, D. A. and Lane, D. J., "16S Ribosomal DNA ampilfication for phylogenetic study," J. Bacteriol., 137(2), 697-703(1991).
  13. Nishimura, M., Kita-T., Kogure K., Ohwasa K. and Simidu U. A. "New method to detect viable bacteric in natural seawater using 16S rRNA Oligonucleotide probe," J. Oceanog., 49, 51-56(2003).
  14. Muyzer, G. E., de Waal, E. C. and Uitterlinden, A. G., "Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA," Appl. Environ. Microbiol., 59, 695-700(1993).
  15. Loffler, F. E., Sun, Q., Li J. and Tiedje, J. M., "16S rRNA gene-based detection of tetrachloroethylene-dechlorinating Desulfuromonas and Dehalococcoides Species," Appl. Environ. Microbiol., 66, 1369-1374(2000). https://doi.org/10.1128/AEM.66.4.1369-1374.2000
  16. Imfeld, G., Aragones, C. E., Fetzer, I., Meszaros, E., Zeiger S., Nijenhuis, I., Nikolausz, M., Delerce, S. and Richnow, H. H., "Characterization of microbial communities in the aqueous phase of a constructed model wetland treating 1, 2-dichloroethene-contaminated groundwater," FEMS Microbiol. Ecol., 72(1), 74-88(2010). https://doi.org/10.1111/j.1574-6941.2009.00825.x
  17. Li, T., Bisaillon, J., Villemur, R., Letourneau, L., Bernard, K., Lepine, F. and Beaudet R., "Isolation and characterization of a new bacterium carboxylating phenol to benzoic acid under anaerobic conditions," J. Bacteriol., 178(9), 2551-2558(1996).