DOI QR코드

DOI QR Code

Interfacial and Rheological Properties of Selected Hydrogel Formulations for Soft Contact Lens

소프트 콘텍트 렌즈용 하이드로젤의 계면학적 및 유변학적 특성 연구

  • Noh, Hye-Ran (Department of Optometry, Seoul National University of Science and Technology)
  • 노혜란 (서울과학기술대학교 안경광학과)
  • Received : 2011.07.08
  • Accepted : 2011.09.06
  • Published : 2012.03.25

Abstract

Interfacial and rheological properties of selected hydrogel formulations were studied to understand the contact-lens comfort in end use. It was concluded that protein adsorption from aqueous solution decreased monotonically with increasing surface energy (water wettability) of tested hydrogels. Also, it has revealed that friction coefficient of polydimethylsiloxane-polyvinylpyrrolidone (PDMS-PVP) was significantly larger that 2-hydroxyethyl methacrylate (HEMA) based hydrogels. Interestingly, in artificial tear solution, friction coefficients of HEMA based hydrogels were larger than silicone hydrogels.

소프트 콘텍트 렌즈의 재질 별 계면학적 특성 및 유변학적 변화를 조사하여 렌즈 재료의 성분 설계에 기본 정보를 제시하고자 하였다. 눈물 단백질인 albumin과 IgG의 흡착량을 측정한 결과 하이드로젤의 표면 에너지가 증가함에 따라 점차 단백질 흡착량이 감소하는 것을 볼 수 있었다. Polydimethylsiloxane-polyvinylpyrrolidone(PDMS-PVP) 하이드로젤은 albumin과 IgG 흡착량이 가장 높았으며 poly(2-hydroxyethyl methacrylate)-polyvinylpyroolidone(HEMA-PVP)의 경우 albumin의 흡착량은 매우 미미한 것으로 나타났다. 일정한 수직항력 하에서의 하이드로젤의 토크는 실리콘 재질인 PDMS-PVP의 경우 HEMA계열보다 약 5배 이상 크게 측정된 것을 볼 수 있었다. 흥미로운 것은 단백질 흡착량이 적은 HEMA계열 하이드로젤의 경우 실리콘 계열 하이드로젤보다 인공 눈물 내 거동 시 마찰계수가 오히려 더 큰 것을 알 수 있었다. 인공눈물 내의 하이드로젤의 거동은 단백질 흡착으로 인한 윤활 효과 외에도 하이드로 젤 고유의 구조와 회전하는 계면의 성질에 큰 영향을 받는 것을 알 수 있었다.

Keywords

References

  1. P. C. Nicolson and J. Vogt, Biomaterials, 22, 3273 (2001). https://doi.org/10.1016/S0142-9612(01)00165-X
  2. Y. Lai, A. Wilson, and S. Zantos, "Contact lens", in Kirk-Othmer Encyclopedia of Chemical Technology, Wiley, New York, pp. 191-218 (1993).
  3. F. Holly and M. Refojo, J. Biomed. Mater. Res., 9, 315 (1975). https://doi.org/10.1002/jbm.820090307
  4. M. Allansmith, D. Korb, J. Greiner, A. Henriquez, M. Simon, and V. Finnemore, Am. J. Opthalmol., 83, 697 (1977). https://doi.org/10.1016/0002-9394(77)90137-4
  5. J. Josephson and B. Caffery, ICLC, 6, 223 (1980).
  6. E. Alfonso, S. Mandelbaum, M. Fox, and R. Forster, Am. J. Opthalm., 101, 429 (1986). https://doi.org/10.1016/0002-9394(86)90641-0
  7. B. Tighe, Silicone Hydrogels: Continuous Wear Contact Lenses, Butterworth-Heinemann, Oxford, 2004.
  8. V. A. M. Luprano, P. A. Ramires, G. Montagna, and E. Milella, J. Mater. Sci. Mater. Med., 8, 175 (1997). https://doi.org/10.1023/A:1018527304576
  9. E. V. Aksenenko, V. I. Kovalchuk, V. B. Fainerman, and R. Miller, Adv. Colloid Interface Sci., 122, 57 (2006). https://doi.org/10.1016/j.cis.2006.06.012
  10. E. Dickinson, Colloids Surf. B, 15, 161 (1999). https://doi.org/10.1016/S0927-7765(99)00042-9
  11. D. Luensmann and L. Jones, Cont. Lens & Anterior Eye, 31, 179 (2008). https://doi.org/10.1016/j.clae.2008.05.004
  12. J. Bohnert, T. Horbett, B. Ratner, and F. Royce, Invest. Ophthalmol. Vis. Sci., 29, 362 (1988).
  13. B. Holden, D. Sweeney, A. Vannas, K. Nilsson, and N. Efron, Invest. Ophthalmol. Vis. Sci., 26, 1489 (1985).
  14. X. Hu, T. Wang, L. Xiong, C. Wang, X. Liu, and Z. Tong, Langmuir, 26, 4233 (2010). https://doi.org/10.1021/la903298n
  15. S. Meng, Z. Guo, Q. Wang, Z. Liu, Q. Wang, W. Zhong, and Q. Du, J. Biomat. Sci.-Polym. Ed., 22, 651 (2011). https://doi.org/10.1163/092050610X489312
  16. K. Cai, Y. Huang, and J.-l. Yang, J. Am. Ceram. Soc., 88, 3332 (2005). https://doi.org/10.1111/j.1551-2916.2005.00602.x
  17. A. Hillerstrom, M. Andersson, J. S. Pederson, A. Altskar, M. Langton, J. v. Stam, and B. Kronberg, J. Appl. Polym. Sci., 114, 1828 (2009). https://doi.org/10.1002/app.30673
  18. A. Hillerstrom and B. Kronberg, J. Appl. Polym. Sci., 110, 3059 (2008). https://doi.org/10.1002/app.28485
  19. M. Nandu, R. Bawa, and Y. Lai, U. S. Patent 5,260,000 (1992).
  20. J. P. Gong and Y. Osada, Prog. Polym. Sci., 27, 3 (2002). https://doi.org/10.1016/S0079-6700(01)00037-5
  21. H. Noh and E. A. Vogler, Biomaterials, 27, 5801 (2006). https://doi.org/10.1016/j.biomaterials.2006.08.005
  22. B. Ratner and S. Bryant, Annu. Rev. Biomed. Eng., 6, 41 (2004). https://doi.org/10.1146/annurev.bioeng.6.040803.140027
  23. H. Noh and E. A. Vogler, Biomaterials, 28, 405 (2007). https://doi.org/10.1016/j.biomaterials.2006.09.006
  24. W. Muller, H. Ringsdorf, E. Rump, G. Wildburg, X. Zhang, L. Angermaier, W. Knoll, M. Liley, and J. Spinke, Science, 262, 1706 (1993). https://doi.org/10.1126/science.8259513
  25. J. P. Gong, G. Kagata, Y. Iwasaki, and Y. Osada, Wear, 251, 1183 (2001). https://doi.org/10.1016/S0043-1648(01)00721-9
  26. D. P. Chang, J. E. Dolbow, and S. Zauscher, Langmuir, 23, 250 (2007). https://doi.org/10.1021/la0617006
  27. S. H. Kim, C. Marmo, and G. A. Somorjai, Biomaterials, 22, 3285 (2001). https://doi.org/10.1016/S0142-9612(01)00175-2
  28. C. Evinger, M. Shaw, C. Peck, K. Manning, and R. Baker, J. Neurophysiol., 52, 323 (1984). https://doi.org/10.1152/jn.1984.52.2.323
  29. H. Collewijn, V. Steen, and R. Steinman, J. Neurophysiol., 54, 11 (1985). https://doi.org/10.1152/jn.1985.54.1.11
  30. J. Khan and C. Graham, Arch. Ophthalmol., 109, 825 (1991). https://doi.org/10.1001/archopht.1991.01080060089031
  31. L. Vroman, L. Adams, M. Klings, G. Fischer, P. Munoz, and R. Solensky, Ann. Ny. Acad. Sci., 283, 65 (1977). https://doi.org/10.1111/j.1749-6632.1977.tb41753.x
  32. E. Leonard and L. Vroman, J. Biomat. Sci. Polym. Ed., 2, 95 (1991).
  33. J. Brash and D. Lyman, J. Biomed. Mater. Res., 3, 175 (1969). https://doi.org/10.1002/jbm.820030114
  34. P. Wojciechowski and J. Brash, J. Biomat. Sci. Polym. Ed., 2, 203 (1991). https://doi.org/10.1080/09205063.1991.9756660
  35. A. Krishnan, Y. Liu, P. Cha, D. L. Allara, and E. A. Vogler, Biomaterials, 27, 3187 (2006). https://doi.org/10.1016/j.biomaterials.2005.12.032
  36. H. Shirahama, J. Lyklema, and W. Norde, J. Colloid Interface Sci., 139, 177 (1990). https://doi.org/10.1016/0021-9797(90)90455-W
  37. H. Noh and E. A. Vogler, Biomaterials, 28, 405 (2006).
  38. H. Noh, S. T. Yohe, and E. A. Vogler, Biomaterials, 29, 2033 (2008). https://doi.org/10.1016/j.biomaterials.2008.01.017
  39. P. Parhi, A. Golas, N. Barnthip, H. Noh, and E. A. Vogler, Biomaterials, 30, 6814 (2009). https://doi.org/10.1016/j.biomaterials.2009.09.005
  40. A. Krishnan, J. Sturgeon, C. Siedlecki, and E. A. Vogler, Langmuir, 19, 10342 (2003). https://doi.org/10.1021/la035308t
  41. B. Lassen and M. Malmsten, J. Colloid Interface Sci., 180, 339 (1996). https://doi.org/10.1006/jcis.1996.0312
  42. N. Barnthip, H. Noh, E. Leibner, and E. A. Vogler, Biomaterials, 29, 3062 (2008). https://doi.org/10.1016/j.biomaterials.2008.03.043

Cited by

  1. Poly(vinylpyrrolidone) – A Versatile Polymer for Biomedical and Beyond Medical Applications vol.54, pp.9, 2015, https://doi.org/10.1080/03602559.2014.979506
  2. Evaluation for Surficial and Internal Hydrophilicity of Soft Contact Lenses vol.22, pp.3, 2017, https://doi.org/10.14479/jkoos.2017.22.3.213
  3. Effects of Repeated Temperature Changes on Soft Contact Lens Parameters vol.23, pp.3, 2018, https://doi.org/10.14479/jkoos.2018.23.3.227
  4. pH Sensitive Soft Contact Lens for Selective Drug-Delivery vol.26, pp.3, 2018, https://doi.org/10.1007/s13233-018-6029-9
  5. Physical Properties of Contact Lens according to Room Temperature Polymerization Conditions vol.24, pp.3, 2019, https://doi.org/10.14479/jkoos.2019.24.3.231