DOI QR코드

DOI QR Code

Lipoic Acid Conjugated Chitosan Copolymer for the Delivery of 5-Fluorouracil

5-Fluorouracil 전달을 위한 리포산이 결합된 키토산 공중합체

  • Lee, Sun-Young (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Kim, Young-Jin (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
  • 이선영 (충남대학교 공과대학 바이오응용화학과) ;
  • 김영진 (충남대학교 공과대학 바이오응용화학과)
  • Received : 2011.06.24
  • Accepted : 2011.07.13
  • Published : 2012.03.25

Abstract

The amphiphilic copolymer by the conjugation of biocompatible chitosan and antioxidant lipoic acid was studied as a drug delivery carrier. The amphiphilic copolymer was self-assembled to form nanoparticles in the aqueous solution. 5-Fluorouracil widely used as an anticancer drug was encapsulated inside the nanoparticles by a solid dispersion method. The degree of branching of lipoic acid on chitosan was controlled to obtain the optimal condition for the drug delivery carrier. The sizes of nanoparticles were about 250 nm by the dynamic light scattering. The encapsulation efficiency of nanoparticles were about 10%. The copolymer with 42% degree of branching showed the best performance as a drug delivery carrier.

생체적합성을 가진 키토산과 강력한 항산화제로 알려진 리포산을 합성하여 만든 양친매성 고분자를 이용하여 약물전달시스템으로서의 응용 가능성을 알아보았다. 수용액 상에서 자기조립의 성질을 가지는 양친매성 고분자는 나노입자를 형성하고 이 입자 안에 항암제로 널리 쓰이는 5-fluorouracil을 고체분산법을 이용하여 봉입하였다. 최적의 약물전달체를 얻기 위하여 키토산에 결합된 리포산의 비율을 조절하여 입자크기 및 약물봉입률을 비교하였다. DLS를 이용하여 측정한 나노입자는 약 250 nm 정도의 크기를 가졌고 그 봉입률은 10% 내외로 측정되었다. 42%의 리포산 치환율을 가지는 공중합체가 약물전달체로서 가장 우수한 성능을 보여주었다.

Keywords

References

  1. J. H. Park, G. Saravanakumar, K. Kim, and I. C. Kwon, Adv. Drug Deliv. Rev., 62, 28 (2010). https://doi.org/10.1016/j.addr.2009.10.003
  2. I. C. Kwon, K. M. Kim, S. W. Kim, H. S. Jeong, and S. Y. Jeong, Polym. Sci. Tech., 15, 396 (2004).
  3. J. H. Kim, Y. S. Kim, K. Park, S. Lee, H. Y. Nam, K. H. Min, H. G. Jo, J. H. Park, K. Choi, S. Y. Jeong, R. W. Park, I. S. Kim, K. Kim, and I. C. Kwon, J. Control. Release, 127, 41 (2008). https://doi.org/10.1016/j.jconrel.2007.12.014
  4. T. C. Yih and M. Al-Fandi, J. Cell. Biochem., 97, 1184 (2006). https://doi.org/10.1002/jcb.20796
  5. L. Mu and S. S. Feng, J. Control. Release, 86, 33 (2003). https://doi.org/10.1016/S0168-3659(02)00320-6
  6. H. Maeda, J. Wu, T. Sawa, Y. Matsumura, and K. Hori, J. Control. Release, 65, 271 (2000). https://doi.org/10.1016/S0168-3659(99)00248-5
  7. G. Winzenburg, C. Schmidt, S. Fuchs, and T. Kissel, Adv. Drug Deliv. Rev., 56, 1453 (2004). https://doi.org/10.1016/j.addr.2004.02.008
  8. Y. S. Wang, L. R. Liu, Q. Jiang, and Q. Q. Zhang, Eur. Polym. J., 43, 43 (2007). https://doi.org/10.1016/j.eurpolymj.2006.09.007
  9. S. A. Agnihotri, N. N. Mallikarjuna, and T. M. Aminabhavi, J. Control. Release, 100, 5 (2004). https://doi.org/10.1016/j.jconrel.2004.08.010
  10. Z. H. Liu, Y. P. Jiao, Y. F. Wang, C. R. Zhou, and Z. Y. Zhang, Adv. Drug Deliv. Rev., 60, 1650 (2008). https://doi.org/10.1016/j.addr.2008.09.001
  11. W. Yue, P. J. Yao, Y. N. Wei, S. Q. Li, F. Lai, and X. M. Liu, Food Chem., 108, 1082 (2008). https://doi.org/10.1016/j.foodchem.2007.11.047
  12. Y. Zhang, M. R. Huo, J. P. Zhou, D. Yu, and Y. P. Wu, Carbohydr. Polym., 77, 231 (2009). https://doi.org/10.1016/j.carbpol.2008.12.034
  13. J. Bustamante, J. K. Lodge, L. Marcocci, H. J. Tritschler, L. Packer, and B. H. Rihn, Free Radical Biol. Med., 24, 1023 (1998). https://doi.org/10.1016/S0891-5849(97)00371-7
  14. G. P. Biewenga, G. R. M. M. Haenen, and A. Bast, Gen. Pharmacol., 29, 315 (1997). https://doi.org/10.1016/S0306-3623(96)00474-0
  15. E. Dozio, M. Ruscica, L. Passaparo, G. Dogliotti, L. Steffani, P. Marthyn, A. Pagani, G. Demartini, D. Esposti, F. Fraschini, and P. Magni, Eur. J. Pharmacol., 641, 29 (2010). https://doi.org/10.1016/j.ejphar.2010.05.009
  16. E. J. Park and Y. J. Kim, Polymer(Korea), 32, 544 (2008).
  17. S. K. Kwon, S. W. Kim, and Y. J. Kim, Polymer(Korea), 34, 501 (2010).