DOI QR코드

DOI QR Code

전기 방사법을 통해 제조된 Poly(L-lactide-co-ε-caprolactone)/Marine Collagen 나노파이버의 특성 및 세포친화력 평가

Characteristics and Biocompatibility of Electrospun Nanofibers with Poly(L-lactide-co-ε-caprolactone)/Marine Collagen

  • 김우진 (한국원자력연구원 정읍방사선과학연구소 방사선공업환경연구부) ;
  • 신영민 (한국원자력연구원 정읍방사선과학연구소 방사선공업환경연구부) ;
  • 박종석 (한국원자력연구원 정읍방사선과학연구소 방사선공업환경연구부) ;
  • 권희정 (한국원자력연구원 정읍방사선과학연구소 방사선공업환경연구부) ;
  • 김용수 (한국원자력연구원 정읍방사선과학연구소 방사선공업환경연구부) ;
  • 신흥수 (한양대학교 응용화학생명공학부 생명공학과) ;
  • 노영창 (한국원자력연구원 정읍방사선과학연구소 방사선공업환경연구부) ;
  • 임윤묵 (한국원자력연구원 정읍방사선과학연구소 방사선공업환경연구부) ;
  • 정무상 (제주한라대학교 임상병리과)
  • Kim, Woo-Jin (Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Shin, Young-Min (Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Park, Jong-Seok (Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Gwon, Hui-Jeong (Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Kim, Yong-Soo (Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Shin, Heung-Soo (Department of Bioengineering, Division of Applied Chemical and Bio Engineering, Hanyang University) ;
  • Nho, Young-Chang (Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Lim, Youn-Mook (Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Chong, Moo-Sang (Department of Clinical Pathology, Cheju Halla University)
  • 투고 : 2011.05.30
  • 심사 : 2011.08.29
  • 발행 : 2012.03.25

초록

본 연구의 목적은 전기방사법을 사용하여 poly(L-lactide-$co$-${\varepsilon}$-caprolactone) (PLCL)과 marine collagen (MC)이 혼합된 나노섬유를 제조하는 것이다. 전기방사된 나노섬유의 직경과 형태는 여러 공정 변수에 의해서 변화되는데, PLCL과 MC의 혼합비, 노즐과 콜렉터와의 거리, 노즐의 직경, 용액의 방출 속도 그리고 전기장의 세기 변화에 따라 나노파이버의 직경을 주사전자현미경을 통해서 분석하였다. 또한 제조된 나노파이버의 표면변화를 확인하기 위해 물과의 접촉각을 측정하였으며, 나노파이버의 세포 친화성을 평가하기 위해 MG-63을 이용하여 생존율과 흡착형태를 주사전자현미경과 형광현미경을 통해서 관찰하였다. 이와 같은 연구 결과, 방사거리, MC의 함량, 전기장의 세기가 증가할수록 제조된 나노파이버의 평균직경은 감소하는 경향을 나타냈다. 또한 MC의 함량이 증가할수록 나노파이버의 친수성이 증가하였고 세포독성은 관찰되지 않았다. 이에 따라 해양유래 생물에서 추출한 콜라겐은 조직공학용 소재에 새롭게 사용될 수 있을 것으로 예상된다.

The uniform nanofibers of poly(L-lactide-$co$-${\varepsilon}$-caprolactone) (PLCL) with different contents of marine collagen (MC) were successfully prepared by electrospinning method. The effects of the major parameters in electrospinning process such as tip to target distance (TTD), voltage, nozzle size and flow rate on the average diameter of the electrospun nanofiber were investigated in generating composite nanofiber. The diameter and morphology of the nanofibers were confirmed by a scanning electron microscopy (SEM). Also, we measured a water contact angle to determine the surface wettability of the nanofibers. The average diameter of the nanofibers decreased as the value of TTD, MC contents, and voltages increased in comparison with that of pristine PLCL nanofiber. In contrast, the diameter of the nanofibers increased as the flow rate and inner diameter of nozzle increased in comparison with that of pristine PLCL. In addition, the hydrophilicity of the nanofiber and attachment of MG-63 cells on the sheets increased as incorporated collagen contents increased. Therefore, the marine collagen would be a potential material to enhance cellular interactivity of synthetic materials by mimicking the natural tissue.

키워드

과제정보

연구 과제 주관 기관 : 교육과학기술부

참고문헌

  1. T. Uyar and F. Besenbacher, Polymer, 49, 5336 (2008). https://doi.org/10.1016/j.polymer.2008.09.025
  2. D. H. Reneker, A. L. Yarin, H. Fong, and S. Koombhongse, J. Appl. Phys., 87, 4531 (2000). https://doi.org/10.1063/1.373532
  3. J. A. Matthews, E. D. Boland, G. E. Wnek, D. G. Simpson, and G. L. Bowlin, J. Bioact. Compat. Polym., 18, 125(2003). https://doi.org/10.1177/0883911503018002003
  4. X. Xin, M. Hussain, and J. J. Mao, Biomaterials, 28, 316 (2007). https://doi.org/10.1016/j.biomaterials.2006.08.042
  5. H. Yoshimoto, Y. M. Shin, H. Terai, and J. P. Vacanti, Biomaterials, 24, 2077 (2003). https://doi.org/10.1016/S0142-9612(02)00635-X
  6. S. I. Jeong, J. H. Kwon, J. I. Lim, S. W. Cho, Y. Jung, W. J. Sung, S. H. Kim, Y. H. Kim, Y. M. Lee, B. S. Kim, C. Y. Choi, and S. J. Kim, Biomaterials, 26, 1405 (2005). https://doi.org/10.1016/j.biomaterials.2004.04.036
  7. K. Kim, M. Yu, X. Zong, J. Chiu, D. Fang, Y. S. Seo, B. S. Hsiao, B. Chu, and M. Hadjiargyrou, Biomaterials, 24, 4977 (2003). https://doi.org/10.1016/S0142-9612(03)00407-1
  8. B. Duan, X. Yuan, Y. Zhu, Y. Zhang, X. Li, Y. Zhang, and K. Yao, Eur. Polym. J., 42, 2013 (2006). https://doi.org/10.1016/j.eurpolymj.2006.04.021
  9. H. Homayoni, S. A. H. Ravandi, and M. Valizadeh, Carbohydr. Polym., 77, 656 (2009). https://doi.org/10.1016/j.carbpol.2009.02.008
  10. J. Venugopal, L. L. Ma, T. Yong, and S. Ramakrishna, Cell. Biol. Int., 29, 861 (2005). https://doi.org/10.1016/j.cellbi.2005.03.026
  11. J. Lee, G. Tae, Y. H. Kim, I. S. Park, and S. H. Kim, Biomaterials, 29, 1872 (2008). https://doi.org/10.1016/j.biomaterials.2007.12.029
  12. M. Spasova, O. Stoilova, N. Manolova, I. Rashkov, and G. Altankov, J. Bioact. Compat. Polym., 22, 62 (2007). https://doi.org/10.1177/0883911506073570
  13. I. K. Kwon, S. Kidoaki, and T. Matsuda, Biomaterials, 26, 3929 (2005). https://doi.org/10.1016/j.biomaterials.2004.10.007
  14. S. I. Jeong, B. S. Kim, S. W. Kang, J. H. Kwon, Y. M. Lee, S. H. Kim, and Y. H. Kim, Biomaterials, 25, 5939 (2004). https://doi.org/10.1016/j.biomaterials.2004.01.057
  15. K. Garkhal, S. Verma, K. Tikoo, and N. Kumar, J. Biomed. Mater. Res. Part A, 82, 747 (2007).
  16. M. Honda, N. Morikawa, K. Hata, T. Yada, S. Morita, and M. Ueda, and K. Kimata, Biomaterials, 24, 3511 (2003). https://doi.org/10.1016/S0142-9612(03)00210-2
  17. K. S. Rho, L. Jeong, G. Lee, B. M. Seo, Y. J. Park, S. D. Hong, S. Roh, J. J. Cho, W. H. Park, and B. M. Min, Biomaterials, 27, 1452 (2006). https://doi.org/10.1016/j.biomaterials.2005.08.004
  18. J. D. Stitzel, K. J. Pawlowski, G. E. Wnek, D. G. Simpson, and G. L. Bowlin, J. Biomater. Appl., 16, 22 (2001). https://doi.org/10.1106/U2UU-M9QH-Y0BB-5GYL
  19. M. Ogawa, R. J. Portier, M. W. Moody, J. Bell, M. A. Schexnayder, and J. N. Losso, Food Chem., 88, 495 (2004). https://doi.org/10.1016/j.foodchem.2004.02.006
  20. E. Song, S. Y. Kim, T. Chun, H. J. Byun, and Y. M. Lee, Biomaterials, 27, 2951 (2006). https://doi.org/10.1016/j.biomaterials.2006.01.015
  21. S. I. Jeong, S. Y. Kim, S. K. Cho, M. S. Chong, K. S. Kim, H. Kim, S. B. Lee, and Y. M. Lee, Biomaterials, 28, 1115 (2007). https://doi.org/10.1016/j.biomaterials.2006.10.025
  22. Z.-M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol., 63, 2223 (2003). https://doi.org/10.1016/S0266-3538(03)00178-7
  23. I. K. Kwon and T. Matsuda, Biomacromolecules, 6, 2096 (2005). https://doi.org/10.1021/bm050086u
  24. Z. Chen, X. Mo, and F. Qing, Mater. Lett., 61, 3490 (2007). https://doi.org/10.1016/j.matlet.2006.11.104
  25. P. Heikkil and A. Harlin, Eur. Polym. J., 44, 3067 (2008). https://doi.org/10.1016/j.eurpolymj.2008.06.032
  26. L. Yan, H. Zhengming, and L. Yandong, Eur. Polym. J., 42, 1696 (2006). https://doi.org/10.1016/j.eurpolymj.2006.02.002
  27. S. Zhao, X. Wu, L. Wang, and Y. Huang, J. Appl. Polym. Sci., 91, 242 (2004). https://doi.org/10.1002/app.13196
  28. T. Subbiah, G. S. Bhat, R. W. Tock, S. Parameswaran, and S. S. Ramkumar, J. Appl. Polym. Sci., 96, 557 (2005). https://doi.org/10.1002/app.21481
  29. V. Beachley and X. Wen, Mater. Sci. Eng. C, 29, 663 (2009). https://doi.org/10.1016/j.msec.2008.10.037
  30. S. Megelski, J. S. Stephens, D. B. Chase, and J. F. Rabolt, Macromolecules, 35, 8456 (2002). https://doi.org/10.1021/ma020444a
  31. J. Zeng, X. Chen, X. Xu, Q. Liang, X. Bian, L. Yang, and X. Jing, J. Appl. Polym. Sci., 89, 1085 (2003). https://doi.org/10.1002/app.12260
  32. W. Cui, X. Li, S. Zhou, and J. Weng, J. Appl. Polym. Sci., 103, 3105 (2007). https://doi.org/10.1002/app.25464
  33. J. Acossay, A. Marruffo, R. Rincon, T. Eubanks, and A. Kuang, Polym. Adv. Technol., 18, 180 (2007). https://doi.org/10.1002/pat.844