DOI QR코드

DOI QR Code

Effect of Film Thickness on Structural, Electrical, and Optical Properties of Sol-Gel Deposited Layer-by-layer ZnO Nanoparticles

  • Shariffudin, S.S. (NANO-Electronic Centre, Faculty of Electrical Engineering, Universiti Teknologi MARA) ;
  • Salina, M. (NANO-Electronic Centre, Faculty of Electrical Engineering, Universiti Teknologi MARA) ;
  • Herman, S.H. (NANO-Electronic Centre, Faculty of Electrical Engineering, Universiti Teknologi MARA) ;
  • Rusop, M. (NANO-Electronic Centre, Faculty of Electrical Engineering, Universiti Teknologi MARA, NANO-SciTech Centre, Institute of Science, Universiti Teknologi MARA)
  • 투고 : 2011.11.04
  • 심사 : 2012.02.20
  • 발행 : 2012.04.25

초록

The structural, electrical, and optical properties of layer-by-layer ZnO nanoparticles deposited using sol-gel spin coating technique were studied and now presented. Thicknesses of the thin films were varied by increasing the number of deposited layers. As part of our characterization process, XRD and FE-SEM were used to characterize the structural properties, current-voltage measurements for the electrical properties, and UV-Vis spectra and photoluminescence spectra for the optical properties of the ZnO thin films. ZnO thin films with thicknesses ranging from 14.2 nm to 62.7 nm were used in this work. Film with thickness of 42.7 nm gave the lowest resistivity among all, $1.39{\times}10^{-2}{\Omega}{\cdot}cm$. Photoluminescence spectra showed two peaks which were in the UV emission centered at 380 nm, and visible emission centered at 590 nm. Optical transmittance spectra of the samples indicated that all films were transparent (>88%) in the visible-NIR range. The optical band gap energy was estimated to be 3.21~3.26 eV, with band gap increased with the thin film thickness.

키워드

참고문헌

  1. K.-H. Bang, D.-K. Hwang, and J.-M. Myoung, App. Surf. Sci. 207, 359 (2003) [DOI: 10.1016/S0169-4332(03)00005-9].
  2. E. S. Shim, H. S. Kang, J. S. Kang, J. H. Kim, and S. Y. Lee, App. Surf. Sci. 186, 474 (2002) [DOI: 10.1016/S0169-4332(01)00746-2].
  3. M. Karaliunas, T. Serevicius, E. Kuokstis, S. Jurš nas, S. Y. Ting, J. J. Huang, and C. C. Yang, Adv. Mater. Res. 222, 86 (2011) [DOI: 10.4028/www.scientific.net/AMR.222.86].
  4. C. Wongchoosuk, K. Subannajui, A. Menzel, I. A. Burshtein, S. Tamir, Y. Lifshitz, and M. Zacharias, J. Phys. Chem. C 115, 757(2011) [DOI: 10.1021/jp110416v].
  5. D. C. Kim, B.H. Kong, and H. K. Cho, J. Mater. Sci. 19, 760 (2008) [DOI: 10.1007/s10854-007-9404-4].
  6. W. J. Jeong, S. K. Kim, and G. C. Park, Thin Solid Films 506-507, 180 (2006) [DOI: 10.1016/j.tsf.2005.08.213].
  7. S. M. Hossein Hejazi, F. Majidi, M. Pirhadi Tavandashti, and M. Ranjbar, Mater. Sci. Semicond. Process 13, 267 (2011) [DOI: 10.1016/j.mssp.2010.12.004].
  8. J. Sengupta, R. K. Sahoo, K. K. Bardhan, and C. D. Mukherjee, Mater. Lett. 65, 2572 (2011) [DOI: 10.1016// j.matlet.2011.06.021].
  9. M. Bouderbala, S. Hamzaoui, B. Amrani, A. H. Reshak, M. Adnane, T. Sahraoui, and M. Zerdali, Phys. Rev. B: Condens. Matter 403, 3326 (2008) [DOI: 10.1016/j.physb.2008.04.045].
  10. S. S. Shariffudin, F. S. Farah, S. H. Herman, B. Mahmood, and M. Rusop, Adv.Mater. Res. 364, 149 (2011) [DOI: 10.4028/www. scientific.net/AMR.364.149].
  11. J. H. Lee, K. H. Ko, and B. O. Park, J. Cryst. Growth 247, 119 (2003) [DOI: 10.1016/S0022-0248(02)01970-3].
  12. Y.-S. Kim, W.-P. Tai, and S.-J. Shu, Thin Solid Films 491, 153 (2005) [DOI: 10.1016/j.tsf.2005.06.013].
  13. L. Xu, X. Li, Y. Chen, and F. Xu, Appl. Surf. Sci. 257, 4031 (2010) [DOI: 10.1016/j.apsusc.2010.11.170].
  14. M. Jung, J. Lee, S. Park, H. Kim, and J. Chang, J. Cryst. Growth 283, 384 (2005) [DOI: 10.1016/j.jcrysgro.2005.06.047].
  15. Y. Zhang, B. Lin, Z. Fu, C. Liu, and W. Han, Opt. Mater. 28, 1192 (2006) [DOI: 10.1016/j.optmat.2005.08.016]
  16. S. Mridha and D. Basak, Mater. Res. Bull. 42, 875 (2007) [DOI: 10.1016/j.materresbull.2006.08.019]
  17. G. Srinivasan, N. Gopalakrishnan, Y. S. Yu, R. Kesavamoorthy, and J. Kumar, Superlattices Microstruct. 43, 112 (2008) [DOI: 10.1016/j.spmi.2007.07.032].
  18. P. Sagar, P. K. Shishodia, R. M. Mehra, H. Okada, A. Wakahara, and A. Yoshida, J. Lumin. 126, 800 (2007) [DOI: 10.1016/ j.jlumin.2006.12.003].
  19. S. O'Brien, L. H. K. Koh, and G. M. Crean, Thin Solid Films 516, 1391 (2008) [DOI: 10.1016/j.tsf.2007.03.160].
  20. A. Van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, J. Phys. Chem. 104, 1715 (2000) [DOI: 10.1021/ jp993327z].
  21. D. Bao, H. Gu, and A. Kuang, Thin Solid Films 312, 37 (1998) [DOI: 10.1016/S0040-6090(97)00302-7].

피인용 문헌

  1. Deposition and Characterization of Al:ZnO Thin Films for Optoelectronic Applications vol.45, pp.11, 2016, https://doi.org/10.1007/s11664-016-4750-8
  2. Preparation of n-ZnO/p-Si solar cells by oxidation of zinc nanoparticles: effect of oxidation temperature on the photovoltaic properties vol.117, pp.4, 2014, https://doi.org/10.1007/s00339-014-8605-y
  3. Effect of grain-size on the ethanol vapor sensing properties of room-temperature sputtered ZnO thin films vol.182, pp.11-12, 2015, https://doi.org/10.1007/s00604-015-1539-z
  4. Thickness dependent study of RF sputtered ZnO thin films for optoelectronic device applications vol.11, pp.6, 2015, https://doi.org/10.1007/s13391-015-4445-y
  5. Investigation of the effects of thickness on physical properties of AZO sol-gel films for photonic device applications vol.735, 2018, https://doi.org/10.1016/j.jallcom.2017.11.361
  6. Synthesis and Temperature Dependence of I-V Characteristic of Spin-Coated Nanostructured ZnO on P-Type Silicon vol.46, 2013, https://doi.org/10.1088/1757-899X/46/1/012026
  7. Thickness effect of nanostructured ZnO thin films prepared by spray method on structural, morphological and optical properties vol.151, 2016, https://doi.org/10.1016/j.mee.2015.11.016
  8. Effect of energetic electron beam treatment on transparent conductive ZnO thin films vol.548, 2013, https://doi.org/10.1016/j.tsf.2013.10.012
  9. Effect of energetic electron beam treatment on Ga-doped ZnO thin films vol.14, pp.6, 2014, https://doi.org/10.1016/j.cap.2014.03.022
  10. Low concentration CO gas sensing properties of hybrid ZnO architecture vol.160, 2016, https://doi.org/10.1016/j.mee.2016.02.070
  11. Investigation of precursor solution concentration effect on morphology and optical properties of zinc oxide nanorods for polymer solar cells application vol.25, pp.4, 2018, https://doi.org/10.29252/ijcm.25.4.885
  12. Optical properties of WO3 thin films using surface plasmon resonance technique vol.115, pp.4, 2014, https://doi.org/10.1063/1.4862962
  13. Effect of Spin Coating Speed on Some Optical Properties of ZnO Thin Films vol.04, pp.05, 2016, https://doi.org/10.4236/msce.2016.45001
  14. Secondary Electron Emission of ZnO Films vol.24, pp.6, 2015, https://doi.org/10.5757/ASCT.2015.24.6.273
  15. and 2D substrates vol.36, pp.5, 2018, https://doi.org/10.1116/1.5036533