DOI QR코드

DOI QR Code

Mechanism of Piezoelectricity for Langasite Based on the Framework Crystal Structure

  • Ohsato, Hitoshi (BK21 Graduate School, Hoseo University, Department of Research, Nagoya Industrial Science Research Institute, Material Science and Engineering, Nagoya Institute of Technology) ;
  • Iwataki, Tsuyoshi (Material Science and Engineering, Nagoya Institute of Technology) ;
  • Morikoshi, Hiroki (Materials Research Center, TDK Co.)
  • Published : 2012.04.25

Abstract

Piezoelectric langasite crystals have superior properties such as high temperature performance and high quality Q and can be applied in combustion pressure sensors and surface acoustic wave (SAW) filters. Crystal growth, crystal structure and properties of langasite group are reviewed, and the mechanism of piezoelectricity of langasite is presented based on the crystal structure and deformation under high pressure. Finally, for the discovery of new piezoelectric materials, this paper presents the role of the framework, and recommends the search of framework crystal structure, because the characteristic of the mechanism exists on the framework of the crystal structure.

Keywords

References

  1. E. L. Belokoneva, M. A. Simonov, A. V. Butashin, B. V. Mill and N. V. Belov, Sov. Phys. Dokl. 25, 954 (1980).
  2. B. V. Mill, A. V. Buntashin, G. G. Khodzhabagyan, E. L. Belokoneba and N. V. Belov , Dokl. Akad. Nauk USSR 264, 1385 (1982).
  3. B. V. Mill and Y. V. Pisarevsky, Proc. 2000 IEEE/EIA Inter. Freq. Control Sympo. 133 (2000).
  4. T. Fukuda, K. Shimamura, T. Kohno, H. Takeda and M. Sato, J. Jap. Asso. Crystal Growth 22(5), 358 (1995). (Japanese)
  5. A. N. Gotalskaya, D. I. Drezin, V. V. Bezdelkin and V. N. Stassevich, Proc. 1993 IEEE Inter. Freq. Control Sympo. 339 (1993).
  6. I. M. Silvestrova, V. V. Bezdelkin, P. A. Senyushenkov and Yu. V. Pisarevsky, Proc. 1993 IEEE Inter. Freq. Control Sympo. 348 (1993).
  7. I. M. Silvestrova, Yu. V. Pisarevsky, V. V. Bezdelkin and P. A. Senyushenkov, Proc. 1993 IEEE Inter. Freq. Control Sympo. 351 (1993).
  8. European Commission - Environment - Waste - WEEE [http:// ec.europa.eu/environment/waste/weee/index_en.htm].
  9. CITIZEN [http://cfm.citizen.co.jp/english/product/pdf/catalog_ pressure_sensor.pdf].
  10. A. A. Kaminskii, B. V. Mill, G. G. Khodzhabagyan, A. F. Konstantinova, A. I. Okorochkov and I. M. Silvestrova, Physica status solidi (a) 80(1), 387 (1983) [http://dx.doi.org/10.1002/pssa.2210800142].
  11. K. Shimamura, H. Takeda, T. Kohno and T. Fukuda, J. Crystal Growth 63, 388 (1996) [http://dx.doi.org/10.1016/0022- 0248(95)01002-5].
  12. J. Sato, H. Takeda, H. Morikoshi, K. Shimamura, P. Rudolph and T. Fukuda, J. Crystal Growth 191, 746 (1998) [http://dx.doi. org/10.1016/S0022-0248(98)00362-5].
  13. H. Takeda and T. Tsurumi, Bull. Ceram. Soc. Japan 46(8), 657 (2011).
  14. H. Takeda, Ph. D. thesis, Tohoku University (1998).
  15. M. Kumatoriya, H. Sato, J. Nakanishi, T. Fujii, M. Kadota and Y. Sakabe, J. Cryst. Growth 229, 289 (2001) [http://dx.doi.org/10.1016/S0022-0248(01)01152-6].
  16. T. Iwataki, H. Ohsato, K. Tanaka, H. Morikoshi, J. Sato, and K. Kawasaki, J. Eur. Ceram. Soc. 21, 1409 (2001) [http://dx.doi.org/10.1016/S0955-2219(01)00029-2].
  17. H. Takeda, S. Shimizu, H. Nishida, S. Okamura and T. Shiosaki, Trans. Mater. Res. Soc. Jpn. 30, 63 (2005).
  18. Y. Shono and M. Tokonami, Introduction of Crystal Chemistry, Uchida Rokakuho, Tokyo, 2002), p. 53.
  19. A. Wu, J. Xu, G. Qian and X. Wu, J. Crystal Growth 275, e703 (2005) [http://dx.doi.org/10.1016/j.jcrysgro.2004.11.116].
  20. B. V. Mill, E. L. Belokoneva and T. Fukuda, Russian J. Inorg. Chem. 43, 1168 (1998).
  21. H. Takeda, J. Sato, T. Kato, K. Kawasaki, H. Morikoshi, K. Shimamura and T. Fukuda, Material Research Bulletin 35, 245 (2000) [http://dx.doi.org/10.1016/S0025-5408(00)00201-4].
  22. S. Zhang, Y. Zheng, H. Kong, J. Xin, E. Frantz and T. R. Shrout, J. Appl. Phys. 105, 114107 (2009) [http://dx.doi.org/10.1063/1.3142429].
  23. H. Takeda, T. Kato, V. I. Chani, H. Morikoshi, K. Shimamura and T. Fukuda, J. Alloys Com. 290, 79 (1999). https://doi.org/10.1016/S0925-8388(99)00203-0
  24. H. Takeda, M. Kumatoria and T. Shiosaki, Key Eng. 216, 43 (2002) [http://dx.doi.org/10.4028/www.scientific.net/KEM.216.43].
  25. C. Lee, E. Kan, H. Xiang and M. H. Whangbo, Chem. Mater. 22(18),5290(2010) [http://dx.doi.org/10.1021/cm101441p].
  26. N. Araki, H. Ohsato, K. Kakimoto, T. Kuribayashi, Y. Kudoh and H. Morikoshi, J. Eur. Ceram. Soc. 27, 4099 (2007) [http://dx.doi. org/10.1016/j.jeurceramsoc.2007.02.177].
  27. H. Hosono, Handbook of Transparent Conductors, Edited by D. Ginley, H. Hosono, and D. Paine, (Springer, 2010), Chap. 10.
  28. K. Hayashi, M. Hirano, S. Matsuishi, and H. Hosono, J. Am. Chem. Soc. 124, 738 (2002) [http://dx.doi.org/10.1021/ja016112n].
  29. K. Hayashi, S. Matsuishi, T. Kamiya, M. Hirano, and H. Hosono, Nature 419, 462 (2002) [http://dx.doi.org/10.1038/nature01053].
  30. S. Matsuishi, Y. Toda, M. Miyakawa, K. Hayashi, T. Kamiya, M. Hirano, I. Tanaka and H. Hosono, Science 301, 626 (2003) [http://dx.doi.org/10.1126/science.1083842].
  31. B. Cockayne and B. Leat, J. Crystal Growth 46(2), 467 (1979) [http://dx.doi.org/10.1016/0022-0248(79)90031-9].
  32. K. Kurashige, Y. Toda, S. Matstuishi, K. Hayashi, M. Hirano and H. Hosono, Cryst. Growth Design 6, 1602 (2006) [http://dx.doi. org/10.1021/cg0600290].
  33. H. Ohsato, Materials Science and Technology, Edited by S. D. Hutagalung,( Intech, Croatia 2012), Chapter 2. [A free online edition: www.intechopen.com].

Cited by

  1. Synthesis and Characterization of the New Strontium Borogermanate Sr3–x/2B2–xGe4+xO14 (x = 0.32) vol.53, pp.18, 2014, https://doi.org/10.1021/ic5012296
  2. Characterization of the Dielectric, Piezoelectric, and Elastic Coefficients of Ca3TaGa3Si2O14Single Crystals up to 800 °C vol.63, pp.5, 2016, https://doi.org/10.1109/TUFFC.2016.2544662
  3. Domain matching epitaxy of GaN films on a novel langasite substrate: an in-plane epitaxial relationship analysis vol.17, pp.24, 2015, https://doi.org/10.1039/C5CE00075K
  4. High-Temperature Piezoelectric Crystals for Acoustic Wave Sensor Applications vol.63, pp.3, 2016, https://doi.org/10.1109/TUFFC.2016.2527599
  5. Crystal Structure and Piezoelectric Properties of Four Component Langasite A3B Ga3Si2O14(A = Ca or Sr, B = Ta or Nb) vol.13, pp.4, 2012, https://doi.org/10.4313/TEEM.2012.13.4.171
  6. Strong luminescence induced by elastic deformation of piezoelectric crystals vol.102, pp.24, 2013, https://doi.org/10.1063/1.4811160
  7. The solid-solution region for the langasite-type Ca3TaGa3Si2O14 crystal as determined by a lever rule vol.415, 2015, https://doi.org/10.1016/j.jcrysgro.2014.12.042
  8. Radiation-induced amorphization of Langasite La 3 Ga 5 SiO 14 vol.500, 2018, https://doi.org/10.1016/j.jnucmat.2017.12.023
  9. SAW Sensors for Chemical Vapors and Gases vol.17, pp.4, 2017, https://doi.org/10.3390/s17040801
  10. Impulsive excitation of mechanoluminescence in SrAl2O4:Eu, Dy phosphors prepared by solid state reaction technique in reduction atmosphere vol.143, 2013, https://doi.org/10.1016/j.jlumin.2013.05.011
  11. Time-resolved structure analysis of piezoelectric crystals by X-ray diffraction under alternating electric field vol.57, pp.11S, 2018, https://doi.org/10.7567/JJAP.57.11UB06