References
- Baines, D., and Knapp, D.J. (1965). "Wind driven water currents." Journal of Hydraulic Division, ASCE, Vol. 91, No. 2, pp. 205-221.
- Browning, G.L., Holland, W.R., Kreiss, H.O., and Worley, S.J. (1990). "An accurate hyperbolic system for approximately hydrostatic and incompressible oceanographic flows." Dyn. Atmos. Oceans, Vol. 14, pp. 303-332.
- Casulli, V. (1999). "A semi-implicit finite difference method for non-hydrostatic, free-surface flows." Int. J. Numer. Meth. Fluids, Vol. 30, No. 4, pp. 425-440. https://doi.org/10.1002/(SICI)1097-0363(19990630)30:4<425::AID-FLD847>3.0.CO;2-D
- Casulli, V., and Stelling, G.S. (1998). "Numerical simulation of 3D quasi-hydrostatic, free-surface flows." Journal of Hydraulic Engineering, Vol. 124, No. 7, pp. 678-686. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:7(678)
- Choi, D.Y., and Wu, C.H. (2006). "A new efficient 3D non-hydrostatic free-surface flow model for simulating water wave motions." Ocean Engineering, Vol. 33, pp. 587-609. https://doi.org/10.1016/j.oceaneng.2005.06.002
- Choi, D.Y., Wu, C.H., and Young, C.C. (2011). "An efficient curvilinear non-hydrostatic model for simulating surface water waves." Int. J. Numer. Meth. Fluids, Vol. 66, No. 9, pp. 1093-1115. https://doi.org/10.1002/fld.2302
- Choi, D.Y., and Yuan, H. (2011). "A horizontally curvilinear non-hydrostatic model for simulating nonlinear wave motion in curved boundaries." Int. J. Numer. Meth. Fluids, DOI: 10.1002/fld.2676, published online.
- Harlow, F.H., and Welch, J.E. (1965). "Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface." Physics of Fluids, Vol. 8, No. 12, pp. 2182-2189. https://doi.org/10.1063/1.1761178
- Launder, B.E., and Spaulding, D.B. (1974). "The numerical computation of turbulence flows." Compt. Methods Appl. Mech. Eng., Vol. 3, No. 2, pp. 269-289. https://doi.org/10.1016/0045-7825(74)90029-2
- Lee, J.W., Teubner, M.D., Nixon, J.B., and Gill, P.M. (2006). "A 3-D non-hydrostatic pressure model for small amplitude free surface flows." Int. J. Numer. Meth. Fluids, Vol. 50, No. 6, pp. 649-672. https://doi.org/10.1002/fld.1054
- Leschziner, M.A., and Rodi, W. (1979). "Calculation of strongly curved open channel flow." Journal ofHydraulic Division, ASCE, Vol. 105, No. 10, pp. 1297-1314.
- Leupi, C., and Altinakar, M.S. (2005). "Finite element modelling of free-surface flows with non-hydrostatic pressure and k-epsilon turbulence model." Int. J. Numer. Meth. Fluids, Vol. 49, No. 2, pp. 149-170. https://doi.org/10.1002/fld.986
- Lien, H.C., Hsieh, T.Y., Yang, J.C., and Yeh, K.C. (1999). "Bend-flow simulation using 2D depth-averaged model." Journal of Hydraulic Engineering, Vol. 125, No. 10, pp. 1097-1108. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:10(1097)
-
Lin, P., and Li, C.W. (2002). "A
${\sigma}$ -coordinate threedimensional numerical model for surface wave propagation." Int. J. Numer. Meth. Fluids, Vol. 38, No. 11, pp. 1045-1068. https://doi.org/10.1002/fld.258 - Marshall, J., Hill, C., Perelman, L., and Adcroft, A. (1997). "Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling." Journal of Geophysical Research, Vol. 102, No. 3, pp. 5733-5752. https://doi.org/10.1029/96JC02776
- Molls, T., and Chaudhry, M.H. (1995). "Depth-averaged open-channel flow model." Journal of Hydraulic Engineering, Vol. 121, No. 6, pp. 453-465. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:6(453)
- Nichols, B.D., and Hirt, C.W. (1975). Methods for calculating multi-dimensional, transient free surface flows past bodies. Technical Report LA-UR-75-1932, Los Alamos National Laboratory, LM.
- Pacanowski, R.C., and Gnanadesikan, A. (1998). "Transient response in a z-level ocean model that resolves topography with partial cell." MonthlyWeather Review, Vol. 126, No. 12, pp. 3248-3270.
- Rozovskii, I.L. (1957). Flow of water in bends of open channels. Transl. 1961, Israel Program for Scientific Translations, Jerusalem.
- Spillane, K.T., and Hess, G.D. (1978). "Wind-induced drift in contained bodies of water." Journal of Physical Oceanography, Vol. 8, No. 5, pp. 930-935. https://doi.org/10.1175/1520-0485(1978)008<0930:WIDICB>2.0.CO;2
- Stansby, P.L., and Zhou, J.G. (1998). "Shallow-water flow solver with non-hydrostatic pressure: 2D vertical plane problems." Int. J. Numer. Meth. Fluids, Vol. 28, No. 3, pp. 541-563. https://doi.org/10.1002/(SICI)1097-0363(19980915)28:3<541::AID-FLD738>3.0.CO;2-0
- Stelling, G.S., and Zijlema, M. (2003). "An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface flow with application to wave propagation." Int. J. Numer. Meth. Fluids, Vol. 43, No. 1, pp. 1-23. https://doi.org/10.1002/fld.595
- Tannehill, J.C., Anderson, D.A., and Pletcher, R.H. (1998). Computational fluid mechanics and heat transfer, Taylor & Francis.
- Tsanis, I.K. (1989). "Simulation of wind-induced water currents." Journal of Hydraulic Engineering, Vol. 115, No. 8, pp. 1113-1134. https://doi.org/10.1061/(ASCE)0733-9429(1989)115:8(1113)
- van Rijn, L.C. (1982). The computation of the flow and turbulence field in dredged trenches. Report S 488-1, Delft Hydraulics Laboratory, Delft, The Netherlands
- Yuan, H., and Wu, C.H. (2004). "An implicit 3D fully non-hydrostatic model for free-surface flows." Int. J. Numer. Meth. Fluids, Vol. 46, No. 7, pp. 709-733. https://doi.org/10.1002/fld.778
- Young, C.-C., Wu, C.H., Liu, W.-C., and Kuo, J.-T. (2009). "A higher-order non-hydrostatic σ model for simulating non-linear refraction-diffraction of water waves." Coastal Engineering, Vol. 56, No. 9, pp. 919-930. https://doi.org/10.1016/j.coastaleng.2009.05.004