DOI QR코드

DOI QR Code

Application of Non-hydrostatic Free Surface Model for Three-Dimensional Viscous Flows

비정수압 자유수면 모형의 3차원 점성 흐름에의 적용

  • 최두용 (한국수자원공사 K-water 연구원)
  • Received : 2011.07.03
  • Accepted : 2012.01.13
  • Published : 2012.04.30

Abstract

A horizontally curvilinear non-hydrostatic free surface model that was applicable to three-dimensional viscous flows was developed. The proposed model employed a top-layer equation to close kinematic free-surface boundary condition, and an isotropic k-${\varepsilon}$ model to close turbulence viscosity in the Reynolds averaged Navier-Stokes equation. The model solved the governing equations with a fractional step method, which solved intermediate velocities in the advection-diffusion step, and corrects these provisional velocities by accounting for source terms including pressure gradient and gravity acceleration. Numerical applications were implemented to the wind-driven currents in a two-dimensional closed basin, the flow in a steep-sided trench, and the flow in a strongly-curved channel accounting for secondary current by the centrifugal force. Through the numerical simulations, the model showed its capability that were in good agreement with experimental data with respect to free surface elevation, velocity, and turbulence characteristics.

본 연구에서는 3차원 점성 흐름에 적용될 수 있는 비정수압 자유수면 모형을 수평방향 직교 곡선좌표계에서 개발하였다. 개발된 수치모형은 엇갈린 격자를 사용함으로써 발생되는 자유수면에서의 경계조건 종결 문제를 수면층 방정식을 도입하여 해결하였으며, 난류의 유동 해석을 위한 폐합식으로 등방성의 k-${\varepsilon}$ 난류모형을 이용하였다. 본 연구에서 운동량방정식은 이송-확산항만으로 중간단계의 유속을 예측하고, 압력 및 중력을 포함하는 생성항과 연속방정식을 결합하여 다음 시간단계의 유동장을 결정하는 계산 단계 분리법을 이용하였다. 수치모형의 적용성 평가를 위하여 폐쇄된 2차원 수조에서의 취송류, 급경사를 가지는 2차원 수로에서의 흐름, 원심력에 의한 이차류 흐름특성 분석을 위한 3차원 급변 만곡류에 대한 모의를 실시하였다. 수치모의 예측치는 수리모형 실험값과 수위, 유속, 난류특성 등에서 일치하는 양상을 보이는 것이 확인되었다.

Keywords

References

  1. Baines, D., and Knapp, D.J. (1965). "Wind driven water currents." Journal of Hydraulic Division, ASCE, Vol. 91, No. 2, pp. 205-221.
  2. Browning, G.L., Holland, W.R., Kreiss, H.O., and Worley, S.J. (1990). "An accurate hyperbolic system for approximately hydrostatic and incompressible oceanographic flows." Dyn. Atmos. Oceans, Vol. 14, pp. 303-332.
  3. Casulli, V. (1999). "A semi-implicit finite difference method for non-hydrostatic, free-surface flows." Int. J. Numer. Meth. Fluids, Vol. 30, No. 4, pp. 425-440. https://doi.org/10.1002/(SICI)1097-0363(19990630)30:4<425::AID-FLD847>3.0.CO;2-D
  4. Casulli, V., and Stelling, G.S. (1998). "Numerical simulation of 3D quasi-hydrostatic, free-surface flows." Journal of Hydraulic Engineering, Vol. 124, No. 7, pp. 678-686. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:7(678)
  5. Choi, D.Y., and Wu, C.H. (2006). "A new efficient 3D non-hydrostatic free-surface flow model for simulating water wave motions." Ocean Engineering, Vol. 33, pp. 587-609. https://doi.org/10.1016/j.oceaneng.2005.06.002
  6. Choi, D.Y., Wu, C.H., and Young, C.C. (2011). "An efficient curvilinear non-hydrostatic model for simulating surface water waves." Int. J. Numer. Meth. Fluids, Vol. 66, No. 9, pp. 1093-1115. https://doi.org/10.1002/fld.2302
  7. Choi, D.Y., and Yuan, H. (2011). "A horizontally curvilinear non-hydrostatic model for simulating nonlinear wave motion in curved boundaries." Int. J. Numer. Meth. Fluids, DOI: 10.1002/fld.2676, published online.
  8. Harlow, F.H., and Welch, J.E. (1965). "Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface." Physics of Fluids, Vol. 8, No. 12, pp. 2182-2189. https://doi.org/10.1063/1.1761178
  9. Launder, B.E., and Spaulding, D.B. (1974). "The numerical computation of turbulence flows." Compt. Methods Appl. Mech. Eng., Vol. 3, No. 2, pp. 269-289. https://doi.org/10.1016/0045-7825(74)90029-2
  10. Lee, J.W., Teubner, M.D., Nixon, J.B., and Gill, P.M. (2006). "A 3-D non-hydrostatic pressure model for small amplitude free surface flows." Int. J. Numer. Meth. Fluids, Vol. 50, No. 6, pp. 649-672. https://doi.org/10.1002/fld.1054
  11. Leschziner, M.A., and Rodi, W. (1979). "Calculation of strongly curved open channel flow." Journal ofHydraulic Division, ASCE, Vol. 105, No. 10, pp. 1297-1314.
  12. Leupi, C., and Altinakar, M.S. (2005). "Finite element modelling of free-surface flows with non-hydrostatic pressure and k-epsilon turbulence model." Int. J. Numer. Meth. Fluids, Vol. 49, No. 2, pp. 149-170. https://doi.org/10.1002/fld.986
  13. Lien, H.C., Hsieh, T.Y., Yang, J.C., and Yeh, K.C. (1999). "Bend-flow simulation using 2D depth-averaged model." Journal of Hydraulic Engineering, Vol. 125, No. 10, pp. 1097-1108. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:10(1097)
  14. Lin, P., and Li, C.W. (2002). "A ${\sigma}$-coordinate threedimensional numerical model for surface wave propagation." Int. J. Numer. Meth. Fluids, Vol. 38, No. 11, pp. 1045-1068. https://doi.org/10.1002/fld.258
  15. Marshall, J., Hill, C., Perelman, L., and Adcroft, A. (1997). "Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling." Journal of Geophysical Research, Vol. 102, No. 3, pp. 5733-5752. https://doi.org/10.1029/96JC02776
  16. Molls, T., and Chaudhry, M.H. (1995). "Depth-averaged open-channel flow model." Journal of Hydraulic Engineering, Vol. 121, No. 6, pp. 453-465. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:6(453)
  17. Nichols, B.D., and Hirt, C.W. (1975). Methods for calculating multi-dimensional, transient free surface flows past bodies. Technical Report LA-UR-75-1932, Los Alamos National Laboratory, LM.
  18. Pacanowski, R.C., and Gnanadesikan, A. (1998). "Transient response in a z-level ocean model that resolves topography with partial cell." MonthlyWeather Review, Vol. 126, No. 12, pp. 3248-3270.
  19. Rozovskii, I.L. (1957). Flow of water in bends of open channels. Transl. 1961, Israel Program for Scientific Translations, Jerusalem.
  20. Spillane, K.T., and Hess, G.D. (1978). "Wind-induced drift in contained bodies of water." Journal of Physical Oceanography, Vol. 8, No. 5, pp. 930-935. https://doi.org/10.1175/1520-0485(1978)008<0930:WIDICB>2.0.CO;2
  21. Stansby, P.L., and Zhou, J.G. (1998). "Shallow-water flow solver with non-hydrostatic pressure: 2D vertical plane problems." Int. J. Numer. Meth. Fluids, Vol. 28, No. 3, pp. 541-563. https://doi.org/10.1002/(SICI)1097-0363(19980915)28:3<541::AID-FLD738>3.0.CO;2-0
  22. Stelling, G.S., and Zijlema, M. (2003). "An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface flow with application to wave propagation." Int. J. Numer. Meth. Fluids, Vol. 43, No. 1, pp. 1-23. https://doi.org/10.1002/fld.595
  23. Tannehill, J.C., Anderson, D.A., and Pletcher, R.H. (1998). Computational fluid mechanics and heat transfer, Taylor & Francis.
  24. Tsanis, I.K. (1989). "Simulation of wind-induced water currents." Journal of Hydraulic Engineering, Vol. 115, No. 8, pp. 1113-1134. https://doi.org/10.1061/(ASCE)0733-9429(1989)115:8(1113)
  25. van Rijn, L.C. (1982). The computation of the flow and turbulence field in dredged trenches. Report S 488-1, Delft Hydraulics Laboratory, Delft, The Netherlands
  26. Yuan, H., and Wu, C.H. (2004). "An implicit 3D fully non-hydrostatic model for free-surface flows." Int. J. Numer. Meth. Fluids, Vol. 46, No. 7, pp. 709-733. https://doi.org/10.1002/fld.778
  27. Young, C.-C., Wu, C.H., Liu, W.-C., and Kuo, J.-T. (2009). "A higher-order non-hydrostatic σ model for simulating non-linear refraction-diffraction of water waves." Coastal Engineering, Vol. 56, No. 9, pp. 919-930. https://doi.org/10.1016/j.coastaleng.2009.05.004