DOI QR코드

DOI QR Code

THE κ-QUOTIENT IMAGES OF METRIC SPACES

  • Lin, Shou (Department of Mathematics Zhangzhou Normal University, Institute of Mathematics Ningde Teachers' College) ;
  • Zheng, Chunyan (Institute of Mathematics Ningde Teachers' College)
  • Received : 2010.11.09
  • Published : 2012.04.30

Abstract

In this paper some properties of sequentially closed sets and $k$-closed sets in a topological space are discussed, it is shown that a space is a $k$-quotient image of a metric space if and only if its each sequentially closed set is $k$-closed, and some related examples about connectedness are obtained.

Keywords

References

  1. J. R. Boone, On k-quotient mappings, Pacific J. Math. 51 (1974), no. 2, 369-377. https://doi.org/10.2140/pjm.1974.51.369
  2. J. R. Boone and F. Siwiec, Sequentially quotient mappings, Czechoslovak Math. J. 26(101) (1976), no. 2, 174-182.
  3. C. R. Borges, A note on dominated spaces, Acta Math. Hungar. 58 (1991), no. 1-2, 13-16. https://doi.org/10.1007/BF01903541
  4. A. Csaszar, $\gamma$-connected sets, Acta Math. Hungar. 101 (2003), no. 4, 273-279. https://doi.org/10.1023/B:AMHU.0000004939.57085.9e
  5. R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
  6. A. Fedeli and A. Le Donne, On good connected preimages, Topology Appl. 125 (2002), no. 3, 489-496. https://doi.org/10.1016/S0166-8641(01)00294-2
  7. S. P. Franklin, Spaces in which sequences suffice, Fund. Math. 57 (1965), no. 1, 107-115.
  8. Q. Huang and S. Lin, Notes on sequentially connected spaces, Acta Math. Hungar. 110 (2006), no. 1-2, 159-164. https://doi.org/10.1007/s10474-006-0012-1
  9. S. Lin, Topologies of Metric Spaces and Function Spaces, Chinese Science Press, Beijing, 2004.
  10. S. Lin, Some problems on generalized metrizable spaces, In: E. Pearl ed., Open Problems in Topology II, Elsevier Science B. V., Amsterdam, 2007, 731-736.
  11. P. J. Nyikos, Classic problems, In: E. Pearl ed., Problems from Topology Proceedings, Topology Atlas, Toronta, 2003, 69-89.
  12. L. A. Steen and Jr J. A. Seebach, Counterexamples in Topology, Second Edition, Springer-Verlag, New York, 1978.
  13. C. Zheng, On k-connected spaces, Far East J. Math. Sci. 25 (2007), no. 1, 37-48.

Cited by

  1. ON SPACES WHICH HAVE COUNTABLE TIGHTNESS AND RELATED SPACES vol.34, pp.2, 2012, https://doi.org/10.5831/HMJ.2012.34.2.199
  2. A NOTE ON SPACES DETERMINED BY CLOSURE-LIKE OPERATORS vol.32, pp.3, 2016, https://doi.org/10.7858/eamj.2016.027