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THE k-QUOTIENT IMAGES OF METRIC SPACES

Shou Lin and Chunyan Zheng

Abstract. In this paper some properties of sequentially closed sets and
k-closed sets in a topological space are discussed, it is shown that a space

is a k-quotient image of a metric space if and only if its each sequentially
closed set is k-closed, and some related examples about connectedness are
obtained.

1. Introduction

It is well known that a topological space is a k-space if and only if it is a quo-
tient image of a paracompact locally compact space [5]. Shou Lin [10] raised the
following question: Are connected k-spaces the quotient images of connected
locally compact spaces? Chunyan Zheng [13] defined k-connected spaces, an-
alyzed the relationship between k-connectedness and connected paracompact
locally compact spaces by mappings, and proved that a Hausdorff space is a
k-connected space with a point-finite k-system if and only if it is a quotient
compact image of a connected paracompact locally compact space, which gave
a partial answer to the question above. A related topological space is a sequen-
tially connected space [6]. Every sequentially connected space is k-connected,
and every k-connected space in which each sequentially closed set is k-closed
is sequentially connected, which inspires our interest in the property of “each
sequentially closed set is k-closed in a space”. On the other hand, in order
to extend the compact-covering mappings defined by A. Arhangel’skǐı, J. R.
Boone [1] defined k-quotient mappings in 1974, and established some results
about the invariance of topological structures, but there is still an important
question how to characterize precisely the k-quotient images of metric spaces.
The main result of this paper is that the k-quotient images of metric spaces
can be characterized as the spaces in which each sequentially closed set is k-
closed. This enhances our interest in this property. Through studying some
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of its basic properties, our knowledge on sequential spaces, quotient mappings
and connectedness are improved.

In this paper all spaces are topological spaces, and they are not required
to satisfy any axioms of separations. All mappings are continuous and onto.
Readers may refer to [5] for unstated notations and terminologies.

2. Sequentially closed sets

Definition 2.1. Let X be a space. A set H ⊂ X is called k-closed [1] in X if
H ∩K is closed in K for each compact subset K of X. A space is a k-space if
its each k-closed set is closed.

A set H ⊂ X is called sequentially closed [7] in X if a sequence S converges
to x ̸∈ H in X, then S is eventually in X \H. A space is sequential if its each
sequentially closed set is closed.

First, we discuss some characterizations of sequentially closed sets in a space.

Lemma 2.2. The following conditions are considered for a space X and P ⊂
X:

(1) P is sequentially closed in X;
(2) Each limit of a sequence in P which converges in X is in P ;
(3) If S is a convergent sequence in X containing its a limit, then S ∩ P

is closed in S.

Then (3) ⇒ (2) ⇔ (1); and (1) ⇒ (3) if X is Hausdorff.

Proof. (3) ⇒ (2) Suppose P satisfies (3). If a sequence {xn} ⊂ P converges to
x in X, put S = {x} ∪ {xn : n ∈ N}, then xn ∈ S ∩ P and S ∩ P is closed in
S, so x ∈ S ∩ P ⊂ P .

(2) ⇒ (1) Assume P satisfies (2). If a sequence {yn} converges to y ̸∈ P in
X, there are only finitely many yn ∈ P by (2), i.e., there exists k ∈ N such that
xn ∈ X \ P whenever n > k. It follows that P is sequentially closed in X.

(1) ⇒ (2) Let P be sequentially closed in X. If a sequence {xn} ⊂ P
converges to x in X, then x ∈ P because {xn} is not eventually in X \ P .

Furthermore, if X is Hausdorff, then (1) ⇒ (3) by [9, Lemma 3.1.1]. □

Corollary 2.3. Each k-closed set is sequentially closed in a space. Then every
sequential space is a k-space [5].

Proof. Assume H is k-closed in a space X. If S is a convergent sequence in X
containing its a limit, then S is compact in X, thus S ∩H is closed in S, i.e.,
H satisfies the condition (3) of Lemma 2.2, hence H is sequentially closed in
X. □

Example 2.4. There exist a compact T1-space X, a sequentially closed subset
P and a convergent sequence C containing its a limit in X such that C ∩ P is
not closed in C.
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Proof. Let βN be the Stone-Čech compactification of the positive integer set
N. Take p ∈ βN \ N and q ̸∈ βN. Put X = N ∪ {p, q} with a topology as
follows: N ∪ {p} endowed with the subspace topology of βN is open in X, the
neighborhoods of q in X are finite complement subsets of X. Then X is a
compact T1-space. Since p is an accumulation point of N, every neighborhood
of p in X contains infinitely many points of N, thus p, q can not be separated
by disjoint neighborhoods in X. Therefore, X is not Hausdorff.

According to [5, Corollary 3.6.15], there are no nontrivial convergent se-
quences in N ∪ {p}. Put P = N ∪ {q}. If a sequence S ⊂ P converges to x in
X, then x ̸= p, so x ∈ P , thus P is sequentially closed in X by Lemma 2.2.
Take C = X, then C is a convergent sequence containing its a limit q, and p is
an accumulation point of P , thus P = C ∩ P is not closed in C. □

3. kq-spaces

We introduce the following concept for the sake of conciseness.

Definition 3.1. A space X is called a kq-space if each sequentially closed
subset of X is k-closed.

Lemma 3.2. X is a sequential space if and only if X is a k-, and kq-space.

Neither sequential spaces nor k-spaces are hereditary [5]. The hereditary
property of kq-spaces is fine.

Theorem 3.3. Let X be a kq-space. If each compact subset of X is sequen-
tially closed, then each subspace of X is a kq-space. Hence, the property with
Hausdorff kq-spaces is hereditary.

Proof. Let Y be a subspace of X. If H is sequentially closed in Y , and H∩K is
not closed in K for some compact subset K ⊂ Y , then H ∩K is not k-closed in
X, thus H ∩K is not sequentially closed in X because X is a kq-space. There
is a sequence {xn} ⊂ H ∩K converging to x ̸∈ H ∩K, then x ∈ K by Lemma
2.2, thus x ̸∈ H and {xn} converges to x in Y , a contradiction. Hence each
sequentially closed subset is k-closed in Y , i.e., Y is a kq-space. □

Sequential spaces and quotient mappings are closely related [7], also kq-
spaces and k-quotient mappings are closely related.

Definition 3.4. Let f : X → Y be a mapping.

(1) f is a k-quotient mapping [1], if H ⊂ Y and f−1(H) is k-closed in X,
then H is k-closed in Y .

(2) f is a sequentially quotient mapping [2], if H ⊂ Y and f−1(H) is
sequentially closed in X, then H is sequentially closed in Y .

It is easy to show that for a mapping f : X → Y , if H is k-closed (resp.
sequentially closed) in Y , then f−1(H) is k-closed (resp. sequentially closed) in
X. J. R. Boone [1] has given examples to show that the concepts of sequentially
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quotient mappings and k-quotient mappings are generally independent. What
conditions will make them have some nice relationship? kq-spaces are a way.

Theorem 3.5. Let f : X → Y be a mapping, where X is a kq-space. Then
f is a k-quotient mapping if and only if Y is a kq-space and f is sequentially
quotient.

Proof. Let f be a k-quotient mapping. If H is sequentially closed in Y , then
f−1(H) is sequentially closed in X. Because X is a kq-space, f−1(H) is k-
closed in X, H is k-closed in Y for f is k-quotient. Hence Y is a kq-space. On
the other hand, if G ⊂ Y and f−1(G) is sequentially closed in X, then f−1(G)
is k-closed in X, thus G is k-closed in Y , hence G is sequentially closed in Y .
It follows that f is sequentially quotient.

Conversely, let f be a sequentially quotient mapping and Y a kq-space. If
H ⊂ Y and f−1(H) is k-closed in X, then f−1(H) is sequentially closed in
X, thus H is sequentially closed in Y , so H is k-closed in Y . Hence f is
k-quotient. □

It is known that a sequential space can be characterized as a quotient image
of a metric space [7]. kq-spaces have a similar characterization. First, let us to
check following lemma, which indicates the generality of sequentially quotient
mappings.

Lemma 3.6. Every space is a sequentially quotient image of a locally compact
metric space.

Proof. For any space X, denote the family of all convergent sequences in X
containing its a limit by {Sα : α ∈ A}. For every α ∈ A, set Sα = {xα}∪{xα,n :
n ∈ N}, where xα,n → xα. Denote Sα endowed with the following new topology
by S′

α: the neighborhoods of the point xα in S′
α are the finite complement

subsets of Sα, other points are isolated. Then S′
α is a compact metric space,

the topology on S′
α is finer than the subspace topology on Sα of X. Let M

be the disjoint topological sum of the family {S′
α : α ∈ A} [3], and define a

function f : M → X by hα = f |S′
α
: S′

α → Sα is homeomorphic for each α ∈ A.
Then M is a locally compact metric space, f is continuous and surjective.
We will check that f is sequentially quotient. Let H ⊂ X and f−1(H) be a
sequentially closed subset of M . If a sequence Sα converges to xα ̸∈ H in X,
then h−1

α (xα) ̸∈ f−1(H) in M . Since h−1
α (Sα) converges to h−1

α (xα) in M ,
h−1
α (Sα) is eventually in M \ f−1(H), then Sα is eventually in X \ H in X,

thus H is sequentially closed in X. Hence f is sequentially quotient. □

Theorem 3.7. The following are equivalent for a space X:

(1) X is a kq-space;
(2) Every sequentially quotient mapping onto X is k-quotient;
(3) X is a k-quotient image of a locally compact metric space;
(4) X is a k-quotient image of a metric space.
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Proof. (1) ⇒ (2) Let X be a kq-space and f : Z → X a sequentially quotient
mapping. If H ⊂ X and f−1(H) is k-closed in Z, then f−1(H) is sequentially
closed in Z. Because f is sequentially quotient, H is sequentially closed in X.
Since X is a kq-space, H is k-closed in X. Hence f is k-quotient.

(2) ⇒ (3) Assume every sequentially quotient mapping onto X is k-quotient.
By Lemma 3.6, there exist a locally compact metric space M and a sequentially
quotient mapping f : M → X, so f is k-quotient.

(3) ⇒ (4) is obvious. (4) ⇒ (1) by Theorem 3.5. □
Just as (1) ⇔ (4) in Theorem 3.7, the spaces in which “every sequentially

closed set is k-closed” are called the kq-spaces in Definition 3.1. The theorem
above also indicates that all of spaces is not a k-quotient image of a metric
space.

A space X has a point-Gδ property if each singleton of X is a Gδ-set.

Theorem 3.8. A Hausdorff space with a point-Gδ property is a kq-space.

Proof. Suppose X is a Hausdorff space with a point-Gδ property and H is
sequentially closed in X. For any compact subset K of X, if x ∈ clK(K ∩H),
there exists a sequence {xn} in K ∩H which converges to x because a compact
Hausdorff space with a point-Gδ property is a first countable space (see [5,
3.1.F(b)]). Since K is closed and H is sequentially closed in X, x ∈ K ∩ H,
i.e., K ∩ H is closed in K, then H is k-closed in X. It implies that X is a
kq-space. □
Remark 3.9. The Hausdorff property in Theorem 3.8 is essential. The space X
in Example 2.4 is a T1-space with a point-Gδ property because X is a countable
set. Since the set P in Example 2.4 is a sequentially closed and non-k-closed
subset of X, X is not a kq-space.

A space X is of countable tightness if x ∈ A ⊂ X, there exists a count-
able set C ⊂ A such that x ∈ C. It is known that a sequential space is of
countable tightness (see [5, 1.7.13(c)]). What is the relationship between kq-
spaces and spaces of countable tightness? It is still an open problem posed by
Moore-Mrówka [11] “Is every compact Hausdorff space of countable tightness
sequential?” So it is difficult to seek a space of countable tightness which is not
a kq-space.

Example 3.10. The Fortissimo space [12]: a kq-space without countable tight-
ness.

Proof. For any uncountable set X, take p as a particular point of X. X is called
a Fortissimo space ifX is endowed with the following topology: F ⊂ X is closed
in X if and only if p ∈ F or F is countable. Then X is a regular Lindelöf space.
Since p ∈ X \ {p} and p ̸∈ F = F for any countable F ⊂ X \ {p}, then X is of
no countable tightness.

If K is an infinite compact subset of X, we can assume that p ∈ K, and
choose an infinite subset {xn : n ∈ N} of K \ {p}, then the open covering
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{X \ {xn : n ∈ N}} ∪ {{xn} : n ∈ N} of K has no finite subcovering, a
contradiction. So all compact subsets of X are finite, then each subset of X is
k-closed, thus X is a kq-space.

It is easy to check that X has no point-Gδ property. Hence the converse
proposition of Theorem 3.8 in a Hausdorff space does not hold. □

4. k-connectedness

Á. Császár [4] introduced the concept of γ-connected sets. The theory of
γ-connected sets is adapt to many connected-like spaces defined by special
subsets. Two kinds of connectedness which are relate to sequentially closed
sets and k-closed sets are introduced as follows.

Definition 4.1. Let X be a space.

(1) X is sequentially connected [6], if X can not be expressed as the union
of two nonempty disjoint sequentially closed subsets of X.

(2) X is k-connected [13], if X can not be expressed as the union of two
nonempty disjoint k-closed subsets of X.

Q. Huang, S. Lin [8], and C. Zheng [13] discussed some properties of con-
nected spaces, sequentially connected spaces and k-connected spaces. Some
elemental relationships are obtained by Definition 4.1 and Corollary 2.3. For
examples, every sequentially connected space is k-connected; every k-connected
space is connected. The following Examples 4.2 and 4.3 will prove that the
converse are false. However, a connected k-space is k-connected; a k-connected
kq-space is sequentially connected.

Example 4.2. A Tychonoff connected kq-space is not k-connected.

Proof. Let βR be the Stone-Čech compactification of real line R. Put X =
R ∪ {p}, where p ∈ βR − R, and endow X with the subspace topology of βR.
Then X is a Tychonoff space. Because R is a connected and dense subset in X,
X is connected. Now, we show that R is k-closed inX. IfK is a compact subset
of X, then |K| ⩽ c, and K ∩ R is a bounded set in R. Suppose not, we can
assume that N ⊂ K∩R. Because N is a closed subset of R, βN is homeomorphic
to clβRN ⊂ K by [5, Corollary 3.6.8], then | K |⩾ 2c by [5, Theorem 3.6.14],
a contradiction. Therefore, there are a, b ∈ R such that K ⊂ [a, b] ∪ {p}, then
K ∩ R = K ∩ [a, b] is compact, thus K ∩ R is closed in R. Hence R is k-closed
in X. Since {p} is k-closed in X and X = R ∪ {p}, X is not k-connected.

Let H be sequentially closed and K compact in X. Put L = H ∩K. Then
L is sequentially closed in X. If p ̸∈ L, then L is sequentially closed in R, thus
L is closed in R and L ⊂ K ∩R, so L is compact in X. If p ∈ L, then p ̸∈ L∩R
and L ∩ R is sequentially closed in X because R is k-closed in X, thus L ∩ R
is compact in X, hence L = (L ∩ R) ∪ {p} is compact in X. Therefore, L is
closed in K. This implies that X is a kq-space. □
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In the example above, R is k-closed in X, then R is sequentially closed in X
by Corollary 2.3. According to Lemma 2.2, if a sequence S in R converges to
a point x in βR, then x ∈ R. This shows that R is sequentially closed in βR.

Example 4.3. A Hausdorff compact k-connected space is not sequentially
connected.

Proof. Take the Stone-Čech compactification βR as the example. Because R is
a connected and dense subset in βR, βR is connected. Since βR is compact, βR
is a k-space, then βR is k-connected. We will show that βR is not sequentially
connected. Obviously, R is open in βR, then βR \ R is closed, thus βR \ R is
sequentially closed in βR. This implies that βR can be expressed as the union
of two disjoint sequentially closed subsets βR \ R and R. Hence, βR is not
sequentially connected. □

In the example above, R is sequentially closed in βR, but R is not k-closed
in βR.
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