DOI QR코드

DOI QR Code

FUZZY δ-TOPOLOGY AND COMPACTNESS

  • Lee, Seok-Jong (Department of Mathematics Chungbuk National University) ;
  • Yun, Sang-Min (Department of Mathematics Chungbuk National University)
  • Received : 2010.11.03
  • Published : 2012.04.30

Abstract

We introduce the concepts of fuzzy ${\delta}$-interior and show that the set of all fuzzy ${\delta}$-open sets is also a fuzzy topology, which is called the fuzzy ${\delta}$-topology. We obtain equivalent forms of fuzzy ${\delta}$-continuity. More-over, the notions of fuzzy ${\delta}$-compactness and fuzzy locally ${\delta}$-compactness are defined and their basic properties under fuzzy ${\delta}$-continuous mappings are investigated.

Keywords

References

  1. K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly conti- nuity, J. Math. Anal. Appl. 82 (1981), no. 1, 14-32. https://doi.org/10.1016/0022-247X(81)90222-5
  2. C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190. https://doi.org/10.1016/0022-247X(68)90057-7
  3. J. R. Choi, B. Y. Lee, and J. H. Park, On fuzzy $\theta$-continuous mappings, Fuzzy Sets and Systems 54 (1993), no. 1, 107-113. https://doi.org/10.1016/0165-0114(93)90366-P
  4. S. Ganguly and S. Saha, A note on $\delta$-continuity and $\delta$-connected sets in fuzzy set theory, Simon Stevin 62 (1988), no. 2, 127-141.
  5. I. M. Hanafy, $\delta$-compactness in fuzzy topological spaces, Math. Japonica 51 (2000), no. 2, 229-234.
  6. Y. C. Kim and J. M. Ko, Fuzzy semi-regular spaces and fuzzy $\delta$-continuous functions, International Journal of Fuzzy Logic and Intelligent Systems 1 (2001), 69-74.
  7. Y. C. Kim and J. W. Park, R-fuzzy $\delta$-closure and r-fuzzy -closure sets, International Journal of Fuzzy Logic and Intelligent Systems 10 (2000), no. 6, 557-563.
  8. Y. C. Kim, A. A. Ramadan, and S. E. Abbas, Separation axioms in terms of $\theta$-closure and $\delta$-closure operators, Indian J. Pure Appl. Math. 34 (2003), no. 7, 1067-1083.
  9. S. J. Lee and J. M. Chu, Categorical property of intuitionistic topological spaces, Commun. Korean Math. Soc. 24 (2009), no. 4, 595-603. https://doi.org/10.4134/CKMS.2009.24.4.595
  10. S. J. Lee and Y. S. Eoum, Intuitionistic fuzzy $\theta$-closure and $\theta$interior, Commun. Korean Math. Soc. 25 (2010), no. 2, 273-282. https://doi.org/10.4134/CKMS.2010.25.2.273
  11. S. J. Lee and J. T. Kim, Fuzzy strongly (r; s)-precontinuous mappings, IEEE Interna- tional Conference on Fuzzy Systems (2009), 581-586.
  12. M. N. Mukherjee and S. P. Sinha, On some near-fuzzy continuous functions between fuzzy topological spaces, Fuzzy Sets and Systems 34 (1990), no. 2, 245-254. https://doi.org/10.1016/0165-0114(90)90163-Z
  13. M. N. Mukherjee and S. P. Sinha, Fuzzy $\Theta$ -closure operator on fuzzy topological spaces, Internat. J. Math. Math. Sci. 14 (1991), no. 2, 309-314. https://doi.org/10.1155/S0161171291000364
  14. Z. Petricevic, On fuzzy semiregularization, separation properties and mappings, Indian J. Pure Appl. Math. 22 (1991), no. 12, 971-982.
  15. P. M. Pu and Y. M. Liu, Fuzzy topology I. Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980), no. 2, 571-599. https://doi.org/10.1016/0022-247X(80)90048-7
  16. L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X