DOI QR코드

DOI QR Code

CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION X8

  • 투고 : 2010.09.29
  • 발행 : 2012.04.30

초록

Exton introduced 20 distinct triple hypergeometric functions whose names are $X_i$ (i = 1, ${\ldots}$, 20) to investigate their twenty Laplace integral representations whose kernels include the confluent hypergeometric functions $_0F_1$, $_1F_1$, a Humbert function ${\Psi}_1$, and a Humbert function ${\Phi}_2$. The object of this paper is to present 18 new integral representations of Euler type for the Exton hypergeometric function $X_8$, whose kernels include the Exton functions ($X_2$, $X_8$) itself, the Horn's function $H_4$, the Gauss hypergeometric function $F$, and Lauricella hypergeometric function $F_C$. We also provide a system of partial differential equations satisfied by $X_8$.

키워드

참고문헌

  1. P. Appell and J. Kampe de Feriet, Fonctions Hypergeometriques et Hyperspheriques; Polynomes d'Hermite, Gauthier-Villars, Paris, 1926.
  2. J. Choi, A. K. Rathie, and H. Harsh, Remarks on a summation formula for three variables hypergeometric function $X_{8}$ and certain hypergeometric transformations, East Asian Math. J. 25 (2009), no. 4, 481-486.
  3. A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions. Vol. I, McGraw-Hill Book Company, New York, Toronto and London, 1953.
  4. H. Exton, Hypergeometric functions of three variables, J. Indian Acad. Math 4 (1982), no. 2, 113-119.
  5. Y. S. Kim, J. Choi, and A. K. Rathie, Remark on two results by Padmanabham for Exton's triple hypergeometric series $X_{8}$, Honam Math. J. 27 (2005), no. 4, 603-608.
  6. Y. S. Kim and A. K. Rathie, On an extension formula for the triple hypergeometric series $X_{8}$ due to Exton, Bull. Korean Math. Soc. 44 (2007), no. 4, 743-751. https://doi.org/10.4134/BKMS.2007.44.4.743
  7. Y. S. Kim, A. K. Rathie, and J. Choi, Another method for Padmanabham's transfor- mation formula for Exton's triple hypergeometric series $X_{8}$, Commun. Korean Math. Soc. 24 (2009), no. 4, 517-521. https://doi.org/10.4134/CKMS.2009.24.4.517
  8. S. W. Lee and Y. S. Kim, An extension of the triple hypergeometric series by Exton, Honam Math. J. 32 (2010), no. 1, 61-71. https://doi.org/10.5831/HMJ.2010.32.1.061
  9. P. A. Padnanabham, Two results on three variable hypergeometric function, Indian J. Pure Appl. Math. 30 (1999), no. 11, 1107-1109.
  10. H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester), Wiley, New York, Chichester, Brisbane, and Toronto, 1985.