DOI QR코드

DOI QR Code

Polymorphysims of CYP17-I Gene in the Exons Were Associated with the Reproductive Endocrine of Japanese Flounder (Paralichthys olivaceus)

  • Ma, R.Q. (Fisheries College, Ocean University of China) ;
  • He, F. (Fisheries College, Ocean University of China) ;
  • Wen, H.S. (Fisheries College, Ocean University of China) ;
  • Li, J.F. (Fisheries College, Ocean University of China) ;
  • Mu, W.J. (Fisheries College, Ocean University of China) ;
  • Liu, M. (Fisheries College, Ocean University of China) ;
  • Zhang, Y.Q. (Fisheries College, Ocean University of China) ;
  • Hu, J. (Fisheries College, Ocean University of China) ;
  • Qun, L. (Fisheries College, Ocean University of China)
  • Received : 2011.12.16
  • Accepted : 2012.02.03
  • Published : 2012.06.01

Abstract

The cytochrome P450c17-I (CYP17-I) is one of the enzymes critical to gonadal development and the synthesis of androgens. Two single nucleotide polymorphisms (SNPs) were detected within the coding region of the CYP17-I gene in a population of 75 male Japanese flounder (Paralichthys olivaceus). They were SNP1 (c.C445T) located in exon2 and SNP2 (c.T980C (p.Phe307Leu)) located in exon5. Four physiological indices, which were serum testosterone (T), serum $17{\beta}$-estradiol ($E_2$), Hepatosomatic index (HSI), and Gonadosomatic index (GSI), were studied to examine the effect of the two SNPs on the reproductive endocrines of Japanese flounder. Multiple comparisons revealed that CT genotype of SNP1 had a much lower T level than CC genotype (p<0.05) and the GSI of individuals with CC genotype of SNP2 was higher than those with TT genotype (p<0.05). Four diplotypes were constructed based on the two SNPs and the diplotype D3 had a significantly lower T level and GSI. In conclusion, the two SNPs were significantly associated with reproductive traits of Japanese flounder.

Keywords

References

  1. Brookes, A. J. 1999. The essence of SNPs. Gene 234:177-186. https://doi.org/10.1016/S0378-1119(99)00219-X
  2. Carmen, G. F., A. S. José and B. Gloria. 2011. Characterization of the gilthead seabream (Sparus aurata L.) transferrin gene: Genomic structure, constitutive expression and SNP variation. Fish Shellfish Immunol. 31:548-556.
  3. Cecilia, C. S., P. L. Timothy, T. W. Ralph, L. V. Roger, S. Mohamed, Y. Jianbo and E. R. Caird. 2009. Single nucleotide polymorphism discovery in rainbow trout by deep sequencing of a reduced representation library. BMC Genomics 10:559. https://doi.org/10.1186/1471-2164-10-559
  4. Chamary, J. V., J. L. Parmley and L. D. Hurst. 2006. Hearing silence: non-neutral evolution at synonymous sites in mammals. Nat. Rev. Genet. 7:98-108. https://doi.org/10.1038/nrg1770
  5. Chang, J. P., J. D. Johnson, G. R. Sawisky, C. L. Grey, G. Mitchell, M. Booth, M. M. Volk, S. K. Parks, E. Thompson, G. G. Goss, C. Klausen and H. R. Habibi. 2009. Signal transduction in multifactorial neuroendocrine control of gonadotropin secretion and synthesis in teleosts-studies on the goldfish model. Gen. Comp. Endocrinol. 161:42-52. https://doi.org/10.1016/j.ygcen.2008.09.005
  6. Conley, A. J. and I. M. Bird. 1997. The role of cytochrome P450 $17\alpha$-hydroxylase and $3\beta$-hydroxysteroid dehydrogenase in the integration of gonadal and adrenal steroidogenesis via the $\Delta5$ and $\Delta4$ pathways of steroidogenesis in mammals. Biol. Reprod. 56:789-799. https://doi.org/10.1095/biolreprod56.4.789
  7. Gupta, P. and K. H. Lee. 2008. Silent mutations result in HlyA hypersecretion by reducing intracellular HlyA protein aggregates. Biotechnol. Bioeng. 101:967-974. https://doi.org/10.1002/bit.21979
  8. Halm, S., J. Y. Kwon, M. Rand-Weaver, J. P. Sumpter, N. Pounds, T. H. Hutchinson and C. R. Tyler. 2003. Cloning and gene expression of P450 $17\alpha$-hydroxylase, 17, 20-lyase cDNA in the gonads and brain of the fathead minnow Pimephales promelas. Gen. Comp. Endocrinol. 130:256-266. https://doi.org/10.1016/S0016-6480(02)00592-0
  9. Hamada, A., R. Danesi, D. K. Price, T. Sissung, C. Chau, D. Venzon, A. Sparreboom, W. L. Dahut and W. D. Figg. 2007. Association of a CYP17 polymorphism with overall survival in caucasian patients with androgen-independent prostate cancer. Urology 70:217-220.
  10. He, F., H. S. Wen, S. L. Dong, L. S. Wang, C. F. Chen, B. Shi, X. J. Mu, J. Yao and Y. G. Zhou. 2008. Identification of estrogen receptor α gene polymorphisms by SSCP and its effect on reproductive traits in Japanese flounder (Paralichthys olivaceus). Comp. Biochem. Physiol. Part B. 150:278-283. https://doi.org/10.1016/j.cbpb.2008.03.013
  11. He, F., H. S. Wen, J. F. Li., D. H. Yu, R. Q. Ma, D. Shi, W. J. Mu, Y. Q. Zhang, J. Hu, M. Liu, W. G. Han, J. N. Zhang, Q. Q. Wang, Y. R. Yuan and Q. Liu. 2011. Single nucleotide polymorphisms of the GnRHR gene associated with reproductive traits of Japanese flounder (Paralichthys olivaceus). Asian-Aust. J. Anim. Sci. 24:463-470. https://doi.org/10.5713/ajas.2011.10331
  12. Kazeto, Y., S. Ijiri, T. Todo, S. Adachi and K. Yamauchi. 2000. Molecular cloning and characterization of Japanese eel ovarian P450c17 (CYP17) cDNA. Gen. Comp. Endocrinol. 118:123-133. https://doi.org/10.1006/gcen.1999.7449
  13. Liao, P. Y. and K. H. Lee. 2010. From SNPs to functional polymorphism: The insight into biotechnology applications. Biochem. Eng. J. 49:149-158. https://doi.org/10.1016/j.bej.2009.12.021
  14. Liu, Z. J. and J. F. Cordes. 2004. DNA marker technologies and their applications in aquaculture genetics. Aquaculture 238:1-37. https://doi.org/10.1016/j.aquaculture.2004.05.027
  15. Liu, Z. J. 2007. Single nucleotide polymorphism (SNP). In: Aquaculture Genome Technologies (Ed. Z. J. Liu). B-Publishing Inc., USA.
  16. Miyoshi, Y., A. Andoa, M. Ookaa, E. Shibab, T. Taguchi and Y. Tamaki. 2003. Association of CYP17 genetic polymorphism with intra-tumoral estradiol concentrations but not with CYP17 messenger RNA levels in breast cancer tissue. Cancer Lett. 195:81-86. https://doi.org/10.1016/S0304-3835(02)00211-2
  17. Nakajin, S., J. E. Shively, P. M. Yuan and P. F. Hall. 1981. Microsomal cytochrome P450 from neonatal pig testis: two enzymatic activities ($17\alpha$-hydroxylase and C17, 20-lyase) associated with one protein. Biochemistry 20:4037-4042. https://doi.org/10.1021/bi00517a014
  18. Orita, M., Y. Suzuki, T. Sekiya and K. Hayashi. 1989. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5:874-879. https://doi.org/10.1016/0888-7543(89)90129-8
  19. Pawapol, K., P. Yniv, M. H. Eric, H. Gideon and D. Lior. 2010. SNP discovery and development of genetic markers for mapping innate immune response genes in common carp (Cyprinus carpio). Fish Shellfish Immunol. 29:356-361. https://doi.org/10.1016/j.fsi.2010.04.013
  20. Payne, A. H. 1990. Hormonal regulation of cytochrome P450 enzymes, cholesterol side-chain cleavage and $17\alpha$-hydroxylase/$C_{17-20}$ lyase in Leydig cells. Biol. Reprod. 42: 399-404. https://doi.org/10.1095/biolreprod42.3.399
  21. Qu, L. J., X. Y. Li, G. Q. Wu and N. Yang. 2005. Efficient and sensitive method of DNA silver staining in polyacrylamide gels. Electrophoresis 26:99-101. https://doi.org/10.1002/elps.200406177
  22. Rafalski, A. 2002. Applications of single nucleotide polymorphisms in crop genetics. Curr. Opin. Plant Biol. 5:94-100. https://doi.org/10.1016/S1369-5266(02)00240-6
  23. Sauna, Z. E., C. Kimchi-Sarfaty, S. V. Ambudkar and M. M. Gottesman. 2007. Silent polymorphisms speak: how they affect pharmacogenomics and the treatment of cancer. Cancer Res. 67:9609-9612. https://doi.org/10.1158/0008-5472.CAN-07-2377
  24. Sirikan, P., K. Bavornlak, C. Parichat, K. Sirawut and M. Piamsak. 2010. Expression levels of RuvBL2 during ovarian development and association between its single nucleotide polymorphism (SNP) and growth of the giant tiger shrimp Penaeus monodon. Aquaculture 308:S83-S90. https://doi.org/10.1016/j.aquaculture.2010.06.038
  25. Thanh, N. M., A. C. Barnes, P. B. Mather, Y. Li and R. E. Lyons. 2010. Single nucleotide polymorphisms in the actin and crustacean hyperglycemic hormone genes and their correlation with individual growth performance in giant freshwater prawn Macrobrachium rosenbergii. Aquaculture 301:7-15. https://doi.org/10.1016/j.aquaculture.2010.02.001
  26. Weber, B. L. and K. L. Nathanson. 2000. Low penetrance genes associated with increased risk for breast cancer. Eur. J. Cancer 36:1193-1199. https://doi.org/10.1016/S0959-8049(00)00082-4
  27. Wei, B. B., Y. Y. Zhang, B. Xi, J. K. Chang, J. M. Bai and J. T. Su. 2010. CYP17 T27C polymorphism and prostate cancer risk: a meta-analysis based on 31 studies. J. Biomed. Res. 24:233-241. https://doi.org/10.1016/S1674-8301(10)60033-4
  28. Wen, H. S., H. X. Song, L. T. Yang, X. K. Mao and L. Gao. 2006. A study on the effects of exogenous hormone on the plasma testosterone and estradiol levels in cultured Japanese flounder. Acta. Ocean. Sin. 28:115-120 (in Chinese with English abstract).

Cited by

  1. Polymorphisms and DNA methylation level in the CpG site of the GHR1 gene associated with mRNA expression, growth traits and hormone level of half-smooth tongue sole (Cynoglossus semilaevis) vol.41, pp.4, 2015, https://doi.org/10.1007/s10695-015-0052-y
  2. Genetic polymorphisms and DNA methylation in exon 1 CpG-rich regions of PACAP gene and its effect on mRNA expression and growth traits in half smooth tongue sole (Cynoglossus semilaevis) vol.42, pp.2, 2016, https://doi.org/10.1007/s10695-015-0147-5
  3. Transcriptome analysis of the gonads of olive flounder (Paralichthys olivaceus) vol.42, pp.6, 2016, https://doi.org/10.1007/s10695-016-0242-2
  4. ) vol.50, pp.5, 2018, https://doi.org/10.1152/physiolgenomics.00016.2018
  5. Transcriptome analysis of the differences in gene expression between testis and ovary in green mud crab ( Scylla paramamosain ) vol.15, pp.1, 2012, https://doi.org/10.1186/1471-2164-15-585