DOI QR코드

DOI QR Code

Gold-Catalyzed Homocoupling Reaction of Terminal Alkynes to 1,3-Diynes

  • Zhu, Mei (College of Chemistry and Chemical Engineering, Luoyang Normal University) ;
  • Ning, Ma (College of Chemistry and Chemical Engineering, Luoyang Normal University) ;
  • Fu, Weijun (College of Chemistry and Chemical Engineering, Luoyang Normal University) ;
  • Xu, Chen (College of Chemistry and Chemical Engineering, Luoyang Normal University) ;
  • Zou, Guanglong (School of Chemistry and Environmental Science, Guizhou University for Nationalities)
  • Received : 2011.11.21
  • Accepted : 2011.12.21
  • Published : 2012.04.20

Abstract

Keywords

References

  1. Tour, J. M. Chem. Rev. 1996, 96, 537. https://doi.org/10.1021/cr9500287
  2. Nielsen, M. B.; Diederich, F. Chem. Rev. 2005, 105, 1837. https://doi.org/10.1021/cr9903353
  3. Martin, R. E.; Diederich, F. Angew. Chem., Int. Ed. 1999, 38, 1350. https://doi.org/10.1002/(SICI)1521-3773(19990517)38:10<1350::AID-ANIE1350>3.0.CO;2-6
  4. Lindsell, W. E.; Murray, C.; Preston, P. N.; Woodman, T. A. J. Tetrahedron 2000, 56, 1233. https://doi.org/10.1016/S0040-4020(00)00016-8
  5. Neenan, T. X.; Whitesides, G. M. J. Org. Chem. 1988, 53, 2489. https://doi.org/10.1021/jo00246a018
  6. De Meijere, A.; Kozhushkov, S.; Haumann, T.; Boese, R.; Puls, C.; Cooney, M. J.; Scott, L. T. Chem. Eur. J. 1995, 1, 124. https://doi.org/10.1002/chem.19950010206
  7. Nicolaou, K. C.; Petasis, N. A.; Zipkin, R. E.; Uenishi, J. J. Am. Chem. Soc. 1982, 104, 5555. https://doi.org/10.1021/ja00384a077
  8. Shi Shun, A. L. K.; Tykwinski, R. R. Angew. Chem., Int. Ed. 2006, 45, 1034. https://doi.org/10.1002/anie.200502071
  9. Mayer, S. F.; Steinreiber, A.; Orru, R. V. A.; Faber, K. J. Org. Chem. 2002, 67, 9115. https://doi.org/10.1021/jo020073w
  10. Ratnayake, A. S.; Hemscheidt, T. Org. Lett. 2002, 4, 4667. https://doi.org/10.1021/ol027033z
  11. Yun, H.; Danishefsky, S. J. J. Org. Chem. 2003, 68, 4519. https://doi.org/10.1021/jo0341665
  12. Zeni, G.; Panatieri, R. B.; Lissner, E.; Menezes, P. H.; Braga, A. L.; Stefani, H. A. Org. Lett. 2001, 3, 819. https://doi.org/10.1021/ol006946v
  13. Stutz, A. Angew. Chem., Int. Ed. 1987, 26, 320. https://doi.org/10.1002/anie.198703201
  14. Paixao, M. W.; Weber, M.; Braga, A. L.; Azeredo, J. B.; Deobald, A. M.; Stefani, H. A. Tetrahedron Lett. 2008, 49, 2366. https://doi.org/10.1016/j.tetlet.2008.02.083
  15. Singh, F. V.; Amaral, M. F. Z. J.; Stefani, H. A. Tetrahedron Lett. 2009, 50, 2636. https://doi.org/10.1016/j.tetlet.2009.03.078
  16. Yan, J.; Wu, J. L.; Jin, H. W. J. Organomet. Chem. 2007, 692, 3636. https://doi.org/10.1016/j.jorganchem.2007.05.004
  17. Damle, S. V.; Seomoon, D.; Lee, P. H. J. Org. Chem. 2003, 68, 7085. https://doi.org/10.1021/jo034727s
  18. Siemsen, P.; Livingston, R. C.; Diederich, F. Angew. Chem., Int. Ed. 2000, 39, 2632. https://doi.org/10.1002/1521-3773(20000804)39:15<2632::AID-ANIE2632>3.0.CO;2-F
  19. Inouchi, K.; Kabashi, S.; Takimiya, K.; Aso, Y.; Otsubo, T. Org. Lett. 2002, 4, 2533. https://doi.org/10.1021/ol026150r
  20. Hay, A. J. Org. Chem. 1960, 25, 1275.
  21. Hay, A. S. J. Org. Chem. 1962, 27, 3320. https://doi.org/10.1021/jo01056a511
  22. Jiang, H. F.; Tang, J. Y.; Wang, A. Z.; Deng, G. H.; Yang, S. R. Synthesis 2006, 1155.
  23. Kamata, K.; Yamaguchi, S.; Kotani, M.; Yamaguchi, K.; Mizuno, N. Angew. Chem., Int. Ed. 2008, 47, 2407. https://doi.org/10.1002/anie.200705126
  24. Adimurthy, S.; Malakar, C. C.; Beifuss, U. J. Org. Chem. 2009, 74, 5648. https://doi.org/10.1021/jo900246z
  25. Yin, W.; He, C.; Chen, M.; Zhang, H.; Lei, A. Org. Lett. 2009, 11, 709. https://doi.org/10.1021/ol8027863
  26. Chen, Z.; Jiang, H.; Wang, A.; Yang, S. J. Org. Chem. 2010, 75, 6700. https://doi.org/10.1021/jo101216m
  27. Li, D.; Yin, K.; Li, J.; Jia, X. Tetrahedron Lett. 2008, 49, 5918. https://doi.org/10.1016/j.tetlet.2008.07.138
  28. Yadav, J. S.; Reddy, B. V. S.; Bhaskar Reddy, K.; Uma Gayathri, K.; Prasad, A. R. Tetrahedron Lett. 2003, 44, 6493. https://doi.org/10.1016/S0040-4039(03)01565-X
  29. Li, L.; Wang, J.; Zhang, G.; Liu, Q. Tetrahedron Lett. 2009, 50, 4033. https://doi.org/10.1016/j.tetlet.2009.04.065
  30. Yamaguchi, K.; Kamata, K.; Yamaguchi, S.; Miyuki Kotani, M.; Mizuno, N. J. Catal. 2008, 258, 121. https://doi.org/10.1016/j.jcat.2008.06.004
  31. Liu, Q.; Burton, D. J. Tetrahedron Lett. 1997, 38, 4371. https://doi.org/10.1016/S0040-4039(97)00969-6
  32. Lei, A.; Srivastava, M.; Zhang, X. J. Org. Chem. 2002, 67, 1969. https://doi.org/10.1021/jo011098i
  33. Markl, G.; Hauptmann, H.; Merz, A.; J. Organomet. Chem. 1983, 249, 335. https://doi.org/10.1016/S0022-328X(00)99433-6
  34. Li, J. H.; Liang, Y.; Xie, Y. X. J. Org. Chem. 2005, 70, 4393. https://doi.org/10.1021/jo0503310
  35. Vlassa, M.; Ciocan-Tarta, I.; Margineanu, F.; Oprean, I. Tetrahedron 1996, 52, 1337. https://doi.org/10.1016/0040-4020(95)00961-2
  36. Cahiez, G.; Moyeux, A.; Buendia, J.; Duplais, C. J. Am. Chem. Soc. 2007, 129, 13788. https://doi.org/10.1021/ja075417k
  37. Bharathi, P.; Periasamy, M. Organometallics 2000, 19, 5511. https://doi.org/10.1021/om000204o
  38. Hashmi, A. S. K.; Hutchings, G. J. Angew. Chem., Int. Ed. 2006, 45, 7896. https://doi.org/10.1002/anie.200602454
  39. Zhang, L.; Sun, J.; Kozmin, S. A. Adv. Synth. Catal. 2006, 348, 2271. https://doi.org/10.1002/adsc.200600368
  40. Furstner, A.; Davies, P. W. Angew. Chem., Int. Ed. 2007, 46, 3410. https://doi.org/10.1002/anie.200604335
  41. Jimenez-Nunez, E.; Echavarren, A. M. Chem. Commun. 2007, 333.
  42. Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395. https://doi.org/10.1038/nature05592
  43. Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180. https://doi.org/10.1021/cr000436x
  44. Marion, N.; Nolan, S. P. Angew. Chem., Int. Ed. 2007, 46, 2750. https://doi.org/10.1002/anie.200604773
  45. Hashmi, A. S. K. Nature 2007, 449, 292. https://doi.org/10.1038/449292a
  46. Dyker, G. Angew. Chem. Int. Ed. 2000, 39, 4237. https://doi.org/10.1002/1521-3773(20001201)39:23<4237::AID-ANIE4237>3.0.CO;2-A
  47. Hoffmann- Röder, A.; Krause, N. Org. Biomol. Chem 2005, 3, 387. https://doi.org/10.1039/b416516k
  48. Brown, R. C. D. Angew. Chem., Int. Ed. 2005, 44, 850. https://doi.org/10.1002/anie.200461668
  49. Hashmi, A. S. K. Angew. Chem., Int. Ed. 2005, 44, 6990. https://doi.org/10.1002/anie.200502735
  50. Ma, S.; Yu, S.; Gu, Z. Angew. Chem., Int. Ed. 2006, 45, 200. https://doi.org/10.1002/anie.200502999
  51. Li, Z. J.; Brouwer, C.; He, C. Chem. Rev. 2008, 108, 3239. https://doi.org/10.1021/cr068434l
  52. Patil, N. T.; Yamamoto, Y. ARKIVOC 2007, 5, 6.
  53. Shapiro, N. D.; Toste, F. D. J. Am. Chem. Soc. 2008, 130, 9244. https://doi.org/10.1021/ja803890t
  54. Barluenga, J.; Dieguez, A.; Fernandez, A.; Rodriguez,F.; Fananas, F. J. Angew. Chem., Int. Ed. 2006, 45, 2091. https://doi.org/10.1002/anie.200503874
  55. Buzas, A.; Gagosz, F. Synlett 2006, 2727.
  56. Hashmi, A. S. K.; Salathe, R.; Frey, W. Synlett 2007, 1763.
  57. Dube, P.; Toste, D. F. J. Am. Chem. Soc. 2006, 128, 12062. https://doi.org/10.1021/ja064209+
  58. Hotha, S.; Kashyap, S. J. Am. Chem. Soc. 2006, 128, 9620. https://doi.org/10.1021/ja062425c
  59. Gockel, B.; Krause, N. Org. Lett. 2006, 8, 4485. https://doi.org/10.1021/ol061669z
  60. Gorin, D. J.; Davis, N. R.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 11260. https://doi.org/10.1021/ja053804t
  61. Brouwer, C.; Rahaman, R.; He, C. Synlett 2007, 1785.
  62. Nakamura, I.; Sato, T.; Yamamoto, Y. Angew. Chem., Int. Ed. 2006, 45, 4473. https://doi.org/10.1002/anie.200601178
  63. Nakamura, I.; Sato, T.; Terada, M.; Yamamoto, Y. Org. Lett. 2007, 9, 4081. https://doi.org/10.1021/ol701951n
  64. Mo, J.; Hwang, H.; Lee, P. H. Bull. Korean Chem. Soc. 2011, 32, 2911. https://doi.org/10.5012/bkcs.2011.32.8.2911
  65. Oh, C. H.; Yi, H. J.; Lee, K. H. Bull. Korean Chem. Soc. 2010, 31, 683. https://doi.org/10.5012/bkcs.2010.31.03.683
  66. Cui, L.; Zhang, G.; Zhang, L. Bioorg. Med. Chem. Lett. 2009, 19, 3884. https://doi.org/10.1016/j.bmcl.2009.03.127
  67. Zhang, G.; Peng, Y.; Cui, L.; Zhang, L. Angew. Chem., Int. Ed. 2009, 48, 3112. https://doi.org/10.1002/anie.200900585
  68. Peng, Y.; Cui, L.; Zhang, G.; Zhang, L. J. Am.Chem. Soc. 2009, 131, 5062. https://doi.org/10.1021/ja901048w
  69. Iglesias, A.; Muniz, K. Chem. Eur. J. 2009, 15, 10563. https://doi.org/10.1002/chem.200901199
  70. Kar, A.; Mangu, N.; Kaiser, H. M.; Beller, M.; Tse, M. K. Chem. Commun. 2008, 386.
  71. Gonzalez-Arellano, C.; Corma, A.; Iglesias, M.; Sanchez, F. J. Catal. 2006, 238, 497. https://doi.org/10.1016/j.jcat.2005.12.015
  72. Gonzalez-Arellano, C.; Abad, A.; Corma, A.; Garcia, H.; Iglesias, M.; Sanchez, F. Angew. Chem. Int. Ed. 2007, 46, 1536. https://doi.org/10.1002/anie.200604746
  73. Fu, W.; Xu, C.; Zou, G.; Hong, D.; Deng, D.; Wang, Z.; Ji, B. Synlett 2009, 763.
  74. Haro, T. D.; Nevado, C. J. Am. Chem. Soc. 2010, 132, 1512. https://doi.org/10.1021/ja909726h
  75. Brand, J. P.; Charpentier, J.; Waser, J. Angew. Chem., Int. Ed. 2009, 48, 9346. https://doi.org/10.1002/anie.200905419
  76. Leyva-Perez, A.; Antonio Domenech, A.; Al- Resayes, S. I.; Corma, A. ACS Catal. 2012, 2, 121. https://doi.org/10.1021/cs200532c

Cited by

  1. An Efficient Synthesis of Substituted Furans by Cupric Halide-Mediated Intramolecular Halocyclization of 2-(1-Alkynyl)-2-alken-1-ones vol.34, pp.3, 2013, https://doi.org/10.5012/bkcs.2013.34.3.887
  2. Gold-Catalyzed Alkynylation: Acetylene-Transfer instead of Functionalization vol.53, pp.11-12, 2013, https://doi.org/10.1002/ijch.201300044
  3. Cobalt-Mediated Decarboxylative Homocoupling of Alkynyl Carboxylic Acids vol.67, pp.5, 2014, https://doi.org/10.1071/CH13564
  4. Water-Soluble Gold-N-Heterocyclic Carbene Complexes for the Catalytic Homogeneous Acid- and Silver-Free Hydration of Hydrophilic Alkynes vol.357, pp.18, 2015, https://doi.org/10.1002/adsc.201500729
  5. On-Surface Synthesis of Carbon-Based Scaffolds and Nanomaterials Using Terminal Alkynes vol.48, pp.7, 2015, https://doi.org/10.1021/acs.accounts.5b00174
  6. Sequential Functionalization of Alkynes and Alkenes Catalyzed by Gold(I) and Palladium(II) N-Heterocyclic Carbene Complexes vol.8, pp.21, 2016, https://doi.org/10.1002/cctc.201600868
  7. Gold-Catalyzed Cadiot-Chodkiewicz-type Cross-Coupling of Terminal Alkynes with Alkynyl Hypervalent Iodine Reagents: Highly Selective Synthesis of Unsymmetrical 1,3-Diynes vol.129, pp.24, 2017, https://doi.org/10.1002/ange.201702833
  8. Gold-Catalyzed Cadiot-Chodkiewicz-type Cross-Coupling of Terminal Alkynes with Alkynyl Hypervalent Iodine Reagents: Highly Selective Synthesis of Unsymmetrical 1,3-Diynes vol.56, pp.24, 2017, https://doi.org/10.1002/anie.201702833
  9. Subnanometer Gold Clusters on Amino-Functionalized Silica: An Efficient Catalyst for the Synthesis of 1,3-Diynes by Oxidative Alkyne Coupling vol.7, pp.5, 2017, https://doi.org/10.1021/acscatal.7b00691
  10. Organic transformations catalyzed by palladium nanoparticles on carbon nanomaterials vol.130, pp.5, 2018, https://doi.org/10.1007/s12039-018-1449-9
  11. Trimethylsilyl-Terminated Oligo(phenylene ethynylene)s: An Approach to Single-Molecule Junctions with Covalent Au–C σ-Bonds vol.134, pp.47, 2012, https://doi.org/10.1021/ja307544w
  12. 1,4,7-Trimethyl-1,4,7-Triazacyclononane as a Low-Loading Catalyst: CuBr-tmtacn Catalysed Glaser reaction of Acetylenes vol.38, pp.6, 2012, https://doi.org/10.3184/174751914x681970
  13. Metal-Free on-Surface Photochemical Homocoupling of Terminal Alkynes vol.138, pp.32, 2012, https://doi.org/10.1021/jacs.6b03589
  14. Facilitating Gold Redox Catalysis with Electrochemistry: An Efficient Chemical‐Oxidant‐Free Approach vol.131, pp.48, 2012, https://doi.org/10.1002/ange.201909082
  15. Facilitating Gold Redox Catalysis with Electrochemistry: An Efficient Chemical‐Oxidant‐Free Approach vol.58, pp.48, 2019, https://doi.org/10.1002/anie.201909082
  16. Catalytic Gold Chemistry: From Simple Salts to Complexes for Regioselective C−H Bond Functionalization vol.27, pp.41, 2012, https://doi.org/10.1002/chem.202100785
  17. Recent Advances in Gold(III) Chemistry: Structure, Bonding, Reactivity, and Role in Homogeneous Catalysis vol.121, pp.14, 2012, https://doi.org/10.1021/acs.chemrev.0c00552
  18. Anthracene‐Containing Gold(I) Triphenylphosphine Acetylide: Synthesis and (Spectro)electrochemical Properties vol.6, pp.45, 2012, https://doi.org/10.1002/slct.202103899