References
- Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, A.; Taga, Y. Science 2001, 293, 269. https://doi.org/10.1126/science.1061051
- Irie, H.; Watanaba, Y.; Hashimoto, K. J. Phys. Chem. B 2003, 107, 5483. https://doi.org/10.1021/jp030133h
- Chen, X. F.; Wang, X. C.; Hou, Y. D.; Huang, J. H.; Wu, L.; Fu, X. Z. J. Catal. 2008, 255, 59. https://doi.org/10.1016/j.jcat.2008.01.025
- Hu, S. Z.; Li, F. Y.; Fan, Z. P. Appl. Surf. Sci. 2011, 258, 1249. https://doi.org/10.1016/j.apsusc.2011.09.085
- Hu, S. Z.; Li, F. Y.; Fan, Z. P. Appl. Surf. Sci. 2011, 258, 182. https://doi.org/10.1016/j.apsusc.2011.08.028
- Hu, S. Z.; Li, F. Y.; Fan, Z. P. J. Hazard. Mater. 2011, 196, 248. https://doi.org/10.1016/j.jhazmat.2011.09.021
- Yamashita, H.; Harada, M.; Misaka, J.; Takeuchi, M.; Ikeue, K.; Anpo, M. J. Photochem. Photobiol. A: Chem. 2002, 148, 257. https://doi.org/10.1016/S1010-6030(02)00051-5
- Karakitsou, K. E.; Verykios, X. E. J. Phys. Chem. 1993, 97, 1184. https://doi.org/10.1021/j100108a014
- Mu, W.; Herrmann, J. M.; Pichat, P. Catal. Lett. 1989, 3, 73. https://doi.org/10.1007/BF00765057
- Choi, W.; Termin, A.; Hoffmann, M. R. Phys. Chem. 1994, 98, 13669. https://doi.org/10.1021/j100102a038
- Khana, R.; Kima, S. W.; Kim, T. J. Mater. Chem. Phys. 2008, 112, 167. https://doi.org/10.1016/j.matchemphys.2008.05.030
- Huang, Y.; Ho, W. K.; Ai, Z. H. Appl. Catal. B 2009, 89, 398. https://doi.org/10.1016/j.apcatb.2008.12.020
- Liu, H. L.; Lu, Z. H.; Yue, L.; Liu, J.; Gan, Z. H.; Shu, C.; Zhang, T.; Shi, J.; Xiong, R. Appl. Surf. Sci. 2011, 257, 9355. https://doi.org/10.1016/j.apsusc.2011.05.085
- Spurr, R. A.; Myers, H. Anal. Chem. 1957, 29, 760. https://doi.org/10.1021/ac60125a006
- Lin, J.; Lin, Y.; Liu, P.; Meziani, M. J.; Allard, L. F.; Sun, Y. P. J. Am. Chem. Soc. 2002, 124, 11514. https://doi.org/10.1021/ja0206341
- Devi, L. G.; Kumar, S. G.; Murthy, B. N.; Kottam, N. Catal. Commun. 2009, 10, 794. https://doi.org/10.1016/j.catcom.2008.11.041
- Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Pure Appl. Chem. 1985, 57, 603. https://doi.org/10.1351/pac198557040603
- Oregan, B.; Gratzel, M. Nature 1991, 353, 737. https://doi.org/10.1038/353737a0
- Li, H. X.; Li, J. X.; Huo, Y. N. J. Phys. Chem. B 2006, 110, 1559. https://doi.org/10.1021/jp055830j
- Cong, Y.; Zhang, J. L.; Chen, F.; Anpo, M.; He, D. N. J. Phys. Chem. C 2007, 111, 10618. https://doi.org/10.1021/jp0727493
- Hu, S. Z.; Wang, A. J.; Li, X.; Lowe, H. J. Phys. Chem. Solids 2010, 71, 156. https://doi.org/10.1016/j.jpcs.2009.10.012
- Khyzhun, O. Y. J. Alloys Compounds doi:10.1016/S0925-8388(03)00736-9.
- Yang, Y.; Li, X. J.; Chen, J. T.; Wang, L. Y. J. Photochem. Photobiol. A 2004, 163, 517. https://doi.org/10.1016/j.jphotochem.2004.02.008
- Hu, S. Z.; Wang, A. J.; Li, X.; Wang, Y.; Lowe, H. Chem. Asian J. 2010, 5, 1171. https://doi.org/10.1002/asia.200900629
- Yamada, K.; Nakamura, H.; Matsushima, S.; Yamane, H.; Haishi, T.; Ohira, K.; Kumada, K. C. R. Chimie 2006, 9, 788. https://doi.org/10.1016/j.crci.2005.05.016
Cited by
- Understanding electronic and optical properties of anatase TiO2 photocatalysts co-doped with nitrogen and transition metals vol.15, pp.24, 2013, https://doi.org/10.1039/c3cp51476e
- Sol–gel synthesis of TiO2 from TiOSO4: characterization and UV photocatalytic activity for the degradation of 4-chlorophenol vol.121, pp.2, 2017, https://doi.org/10.1007/s11144-017-1195-x