DOI QR코드

DOI QR Code

Spectroscopic and Morphological Investigation of Co3O4 Microfibers Produced by Electrospinning Process

  • Baek, J.H. (Department of Chemistry, Pukyong National University) ;
  • Park, J.Y. (Department of Chemistry, Pukyong National University) ;
  • Hwang, A.R. (Department of Chemistry, Pukyong National University) ;
  • Kang, Y.C. (Department of Chemistry, Pukyong National University)
  • 투고 : 2011.12.18
  • 심사 : 2012.01.09
  • 발행 : 2012.04.20

초록

The Co oxide microfibers were synthesized using the electrospinning process and formed $Co_3O_4$ microfibers after being calcined at high temperatures. The calcination temperature influenced the diameters, morphology, crystalline phase, and chemical environment of the fibers. The surface morphology of the obtained fibers was examined by using the scanning electron microscope (SEM). As the calcination temperatures increased from room temperature to 873 and 1173 K, the diameters of the cobalt oxide fibers decreased from 1.79 to 0.82 and 0.32 mm, respectively. The structure of the fibers was investigated with X-ray diffraction (XRD) and transmission electron microscopy (TEM). The calcined $Co_3O_4$ fibers had crystalline face-centered cubic (fcc) structure. The X-ray photoelectron spectroscopy (XPS) results revealed that increasing the calcination temperature promoted the formation of $Co^{2+}$ and $Co^{3+}$ species.

키워드

참고문헌

  1. Hu, J. Q.; Ma, X. L.; Shang, N. G. J. Phys. Chem. B 2002, 106, 3823. https://doi.org/10.1021/jp0125552
  2. Xia, Y.; Yang, P.; Sun, Y. Adv. Mater. 2003, 15, 353. https://doi.org/10.1002/adma.200390087
  3. Luo, S.; Fan, J.; Liu, W. Nanotechnology 2006, 17, 1695. https://doi.org/10.1088/0957-4484/17/6/025
  4. Chaudhari, G. N.; Bambole, D. R.; Bodade, A. B. J. Mater. Sci. 2006, 41, 4860. https://doi.org/10.1007/s10853-006-0042-7
  5. Chen, C. L.; Weng, H. S. Appl. Catal. B 2005, 55, 115. https://doi.org/10.1016/j.apcatb.2004.08.001
  6. Yu, D.; Ying, W.; Liang, S.; Michael, B.; Heng Z.; Yu, L. Biosen. Bioelec. 2010, 26, 542. https://doi.org/10.1016/j.bios.2010.07.050
  7. Noguchi, S.; Mizuhashi, M. Thin Solid Films 1981, 77, 99. https://doi.org/10.1016/0040-6090(81)90364-3
  8. Logothesis, E. M.; Park, K.; Meitzler, A. H.; Laud, K. R. Appl. Phys. Lett. 1975, 26, 209. https://doi.org/10.1063/1.88118
  9. Chun, M. S.; Moon, M. J.; Park, J.; Kang, Y. C. Bull. Korean Chem. Soc. 2009, 30, 2729. https://doi.org/10.5012/bkcs.2009.30.11.2729
  10. Szegedi, A.; Popova, M.; Mavrodinova, V.; Minchev, C. Appl. Catal. A 2008, 338, 44. https://doi.org/10.1016/j.apcata.2007.12.017
  11. Kim, H.; Park, D. W.; Woo, H. C.; Chung, J. S. Appl. Catal. B 1998, 19, 233. https://doi.org/10.1016/S0926-3373(98)00074-5
  12. Hu, C. C.; Cheng, C. Y. Electrochem. Solid-State Lett. 2002, 5, A43. https://doi.org/10.1149/1.1448184
  13. Hosono, E.; Fujihara, S.; Honma, I.; Ichihara, M.; Zhou, H. J. Power Sources 2006, 158, 779. https://doi.org/10.1016/j.jpowsour.2005.09.052
  14. Wang, H.; Jang, Y. I.; Huang, B.; Sadoway, D. R.; Chiang, Y. M. J. Electrochem. Soc. 1999, 146, 473. https://doi.org/10.1149/1.1391631
  15. Liu, Y.; Mi, C.; Su, L.; Zhang, X. Electrochim. Acta 2008, 53, 2507. https://doi.org/10.1016/j.electacta.2007.10.020
  16. Monk, P. M. S.; Ayub, S. Solid State Ionics 1997, 99, 115. https://doi.org/10.1016/S0167-2738(97)00148-3
  17. Schumacher, L. C.; Holzhueter, I.; Hill, I. R.; Dignam, M. J. Electrochim. Acta 1990, 35, 975. https://doi.org/10.1016/0013-4686(90)90030-4
  18. Hu, C. C.; Chen, C. A. J. Chin. Inst. Chem. Eng. 1999, 30, 431.
  19. Casella, I. G.; Gatta, M. J. Electroanal. Chem. 2002, 534, 31. https://doi.org/10.1016/S0022-0728(02)01100-2
  20. Salah A.; Makhlouf J. Magn. Magn. Mater. 2002, 246, 184. https://doi.org/10.1016/S0304-8853(02)00050-1
  21. Schumacher, L. C.; Hill, I. R.; Dignam, M. J. Electrochim. Acta 1990, 35, 975. https://doi.org/10.1016/0013-4686(90)90030-4
  22. Spinolo, G.; Ardizzone, S.; Trasatti, S. J. Electroanal. Chem. 1997, 423, 49. https://doi.org/10.1016/S0022-0728(96)04841-3
  23. Casella.; Innocenzo, G. J. Electroanal. Chem. 2002, 520, 119. https://doi.org/10.1016/S0022-0728(02)00642-3
  24. Shao, C. L.; Kim, H. Y.; Gong, J.; Lee, D. R. Nanotechnology 2002, 13(5), 635. https://doi.org/10.1088/0957-4484/13/5/319
  25. Ramaseshan, R.; Sundarrajan, S.; Jose, R.; Ramakrishna, S. J. Appl. Phys. 2007, 102, 111101. https://doi.org/10.1063/1.2815499
  26. Dan, Li.; Younan, X. Adv. Mater. 2004, 16, 1151. https://doi.org/10.1002/adma.200400719
  27. Yu, Z. G.; Yang, B. C. Mater. Lett. 2008, 62, 211. https://doi.org/10.1016/j.matlet.2007.04.100
  28. Hongyu, G.; Changlu, S.; Shangbin, W.; Bin, C.; Jian, G.; Xinghua, Y. Mater. Chem. Phys. 2003, 82, 1002. https://doi.org/10.1016/j.matchemphys.2003.09.003
  29. Jo, J. M.; Park, J.; Kim, D.; Koh, S. W.; Kang, Y. C. Bull. Korean Chem. Soc. 2010, 31, 1776. https://doi.org/10.5012/bkcs.2010.31.6.1776
  30. Hwang, A. R.; Park, J.; Kang, Y. C. Bull. Korean Chem. Soc. 2011, 32, 3338. https://doi.org/10.5012/bkcs.2011.32.9.3338
  31. Zhiyao, H.; Chunxia, L.; Jun, Y.; Hongzhou, L.; Piaoping, Y.; Ruitao, C.; Ziyong, C.; Jun, L. J. Mater. Chem. 2009, 19, 2737. https://doi.org/10.1039/b818810f
  32. JCPDS Database, International Center for Diffraction Data 1997, PDF 73-1969.
  33. Klong, H. P.; Alexander, L. E. X-ray Diffraction Procedures for Crystalline and Amorphous Materials; Wiley: New York, 1954; pp 491-538.
  34. Wang, Y.; Zhong, Z.; Chen, Y.; Ng, C. T.; Lin, J. Nano Res. 2011, 4, 695. https://doi.org/10.1007/s12274-011-0125-x
  35. Jiang, P.; Zhou, J. J.; Li, R.; Wang, Z. L.; Xie, S. S. Ins. Phy. Pub. Nano. 2006, 17, 3533.
  36. Xu, X. L.; Chen, Z. H.; Li, Y.; Chen, W. K.; Li, J. Q. Sur. Sci. 2009, 603, 653. https://doi.org/10.1016/j.susc.2008.12.036
  37. Helena, A. E.; Hagelin-W.; Gar, B. H.; David, M. M.; Ghaleb, N. S. Appl. Surf. Sci. 2004, 235, 420. https://doi.org/10.1016/j.apsusc.2004.02.062
  38. Petitto, S. C.; Langell, M. A. J. Vac. Sci. Technol. 2004, A22, 4.
  39. Altavilla, A.; Ciliverto, E. Appl. Phys. A 2004, 79, 309. https://doi.org/10.1007/s00339-004-2524-2

피인용 문헌

  1. and Crushed Graphite for Lithium-Oxygen Batteries vol.15, pp.10, 2014, https://doi.org/10.1002/cphc.201400054
  2. Nanowires vol.53, pp.20, 2014, https://doi.org/10.1021/ic501157e
  3. Effect of Cobalt on Reduction Characteristics of Ceria under Ethanol Steam Reforming Conditions: AP-XPS and XANES Studies vol.120, pp.27, 2016, https://doi.org/10.1021/acs.jpcc.6b02490
  4. Formic Acid Modified Co3O4-CeO2 Catalysts for CO Oxidation vol.6, pp.3, 2016, https://doi.org/10.3390/catal6030048
  5. Nanostructures as an Efficient Electrocatalyst for Water Oxidation and for a Zinc–Air Battery vol.8, pp.9, 2016, https://doi.org/10.1021/acsami.5b11840
  6. Electrochemical performance of bifunctional Co/graphitic carbon catalysts prepared from metal–organic frameworks for oxygen reduction and evolution reactions in alkaline solution vol.48, pp.11, 2018, https://doi.org/10.1007/s10800-018-1245-8
  7. Selective Flotation of Cassiterite from Calcite with Salicylhydroxamic Acid Collector and Carboxymethyl Cellulose Depressant vol.8, pp.8, 2018, https://doi.org/10.3390/min8080316
  8. Co3O4/C/graphene nanocomposites as novel anode materials for high capacity lithium ion batteries vol.5, pp.90, 2012, https://doi.org/10.1039/c5ra11104h
  9. Direct catalytic decomposition of N2O over Co(x)/RPSA catalysts vol.45, pp.6, 2019, https://doi.org/10.1007/s11164-019-03811-6
  10. Synthesis of Porous Carbon‐coated Cobalt Catalyst through Pyrolyzing Metal-Organic Framework and their Bifunctional OER/ORR Catalytic Activity for Zn‐Air Rechargeable Batteries vol.41, pp.3, 2012, https://doi.org/10.1002/bkcs.11973
  11. Electrical properties of partially nitrided LiCoO2 thin films with an equivalent amount of Li and Co vol.35, pp.9, 2012, https://doi.org/10.1080/10667857.2020.1718844