DOI QR코드

DOI QR Code

Prediction Models of P-Glycoprotein Substrates Using Simple 2D and 3D Descriptors by a Recursive Partitioning Approach

  • Joung, Jong-Young (Bioinformatics and Molecular Design Research Center) ;
  • Kim, Hyoung-Joon (Department of Biotechnology and Translational Research Center for Protein Function Control, Yonsei University) ;
  • Kim, Hwan-Mook (College of Pharmacy, Gachon University of Medicine and Science) ;
  • Ahn, Soon-Kil (Division of Life Sciences, University of Incheon) ;
  • Nam, Ky-Youb (YOUAI Co., Ltd.) ;
  • No, Kyoung-Tai (Department of Biotechnology and Translational Research Center for Protein Function Control, Yonsei University)
  • Received : 2011.10.31
  • Accepted : 2011.12.21
  • Published : 2012.04.20

Abstract

P-gp (P-glycoprotein) is a member of the ATP binding cassette (ABC) family of transporters. It transports many kinds of anticancer drugs out of the cell. It plays a major role as a cause of multidrug resistance (MDR). MDR function may be a cause of the failure of chemotherapy in cancer and influence pharmacokinetic properties of many drugs. Hence classification of candidate drugs as substrates or nonsubstrate of the P-gp is important in drug development. Therefore to identify whether a compound is a P-gp substrate or not, in silico method is promising. Recursive Partitioning (RP) method was explored for prediction of P-gp substrate. A set of 261 compounds, including 146 substrates and 115 nonsubstrates of P-gp, was used to training and validation. Using molecular descriptors that we can interpret their own meaning, we have established two models for prediction of P-gp substrates. In the first model, we chose only 6 descriptors which have simple physical meaning. In the training set, the overall predictability of our model is 78.95%. In case of test set, overall predictability is 69.23%. Second model with 2D and 3D descriptors shows a little better predictability (overall predictability of training set is 79.29%, test set is 79.37%), the second model with 2D and 3D descriptors shows better discriminating power than first model with only 2D descriptors. This approach will be used to reduce the number of compounds required to be run in the P-gp efflux assay.

Keywords

References

  1. Kennedy, T. Drug Disc. Today 1997, 2, 436-444. https://doi.org/10.1016/S1359-6446(97)01099-4
  2. van de Waterbeemd, H.; Gifford, E. Nat. Rev. DrugDisc. 2003, 2, 192-204. https://doi.org/10.1038/nrd1032
  3. Chohan, K. K.; Paine, S. W.; Waters, N. J. Curr. Chem. Biol. 2008, 2, 215-228. https://doi.org/10.2174/187231308785739747
  4. Demel, M. A.; Schwaha, R.; Kramer, O.; Ettmayer, P.; Haaksma, E. E.; Ecker, G. F. Expert Opin. Metab. Toxicol. 2008, 4, 1167- 1180. https://doi.org/10.1517/17425255.4.9.1167
  5. Gottesman, M. M.; Fojo, T.; Bates, S. E. Nat. Rev. Cancer 2002, 2, 48-58. https://doi.org/10.1038/nrc706
  6. Pauli-Magnus, C.; Meier, P. J. Hepatology 2006, 44, 778-787. https://doi.org/10.1002/hep.21359
  7. Higgins, C. F.; Linton, K. J. Nat. Struct. Mol. Biol. 2004, 11, 918- 926. https://doi.org/10.1038/nsmb836
  8. Schinkel, A. H. Adv. Drug Deliver. Rev. 1999, 36, 179-194. https://doi.org/10.1016/S0169-409X(98)00085-4
  9. Kim, R. B.; Fromm, M. F.; Wandel, C.; Leake, B.; Wood, A. J.; Roden, D. M.; Wilkinson, G. R. J. Clin. Invest. 1998, 101, 289- 294. https://doi.org/10.1172/JCI1269
  10. Cabrera, M. A.; González, I.; Fernández, C.; Navarro, C.; Bermejo, M. J. Pharm. Sci. 2006, 95, 589-606. https://doi.org/10.1002/jps.20449
  11. Bain, L. J.; McLachlan, J. B.; LeBlanc, G. A. Environ. Health Perspect. 1997, 105, 812-818. https://doi.org/10.1289/ehp.97105812
  12. Litman, T.; Zeuthen, T.; Skovsgaard, T.; Stein, W. D. Biochim. Biophys. Acta 1997, 1361, 159-168. https://doi.org/10.1016/S0925-4439(97)00026-4
  13. Seelig, A. Eur. J. Biochem. 1998, 251, 252-261. https://doi.org/10.1046/j.1432-1327.1998.2510252.x
  14. Penzotti, J. E.; Lamb, M. L.; Evensen, E.; Grootenhuis, P. D. J. J. Med. Chem. 2002, 45, 1737-1740. https://doi.org/10.1021/jm0255062
  15. Wang, Y. H.; Li, Y.; Yang, S. L.; Yang, L. J. Chem. Inf. Model 2005, 45, 750-757. https://doi.org/10.1021/ci050041k
  16. Xue, Y.; Yap, C. W.; Sun, L. Z.; Cao, Z. W.; Wang, J. F.; Chen, Y. Z. J. Chem. Inf. Comput. Sci. 2004, 44, 1497-1505. https://doi.org/10.1021/ci049971e
  17. de Cerqueira Lima, P.; Golbraikh, A.; Oloff, S.; Xiao, Y.; Tropsha, A. J. Chem. Inf. Model. 2006, 46, 1245-1254. https://doi.org/10.1021/ci0504317
  18. Gang, S.; Kim, H.; Oh, W.; Kim, S.; No, K. T.; Nam, K.-Y. J. Kor. Chem. Soc. 2009, 53, 653-662. https://doi.org/10.5012/jkcs.2009.53.6.653
  19. Choi, I.; Kim, S. Y.; Kim, H.; Kang, N. S.; Bae, M. A.; Yoo, S. E.; Jung, J.; No, K. T. Eur. J. Med. Chem. 2009, 44, 2354-2360. https://doi.org/10.1016/j.ejmech.2008.08.013
  20. Gombar, V. K.; Polli, J. W.; Humphreys, J. E.; Wring, S. A.; Serabjit-Singh, C. S. J. Pharm. Sci. 2004, 93, 957-968. https://doi.org/10.1002/jps.20035
  21. Bioinformatics & Molecular Design Research Center, Seoul, Korea, PreADMET, version 2.0. 2007; available at http://preadmet.bmdrc.org/
  22. Connolly, M. L. J. Appl. Cryst. 1983, 16, 548-558. https://doi.org/10.1107/S0021889883010985
  23. Discovery Studio, version 2.1, 2007; Accelrys, Inc., San Diego, Calif.
  24. In, Y.; Chai, H. H.; No, K. T. J. Chem. Inf. Model. 2005, 45, 254- 263. https://doi.org/10.1021/ci0498564
  25. Kim, J.; Nam, K.-Y.; Cho, K.-H.; Choi, S.-H.; Noh, J. S.; No, K. T. Bull. Korean Chem. Soc. 2003, 24(12), 1742-1750, https://doi.org/10.5012/bkcs.2003.24.12.1742
  26. Nam, K.-Y.; Cho, D. H.; Paek, K.; No, K. T. Chem. Phys. Lett. 2002, 364, 267-272. https://doi.org/10.1016/S0009-2614(02)01335-0
  27. Accelys Pipeline Pilot, Version 7.0; 2009; available at http://accelrys.com/
  28. Huang, J.; Ma, G.; Muhammad, I.; Cheng, Y. J. Chem. Inf. Model 2007, 47, 1638-1647. https://doi.org/10.1021/ci700083n
  29. Xue, Y.; Li, Z. R.; Yap, C. W.; Sun, L. Z.; Chen, X.; Chen, Y. Z. J. Chem. Inf. Comput. Sci. 2004, 44, 1630-1638. https://doi.org/10.1021/ci049869h
  30. Matthews, B. W. Biochim. Biophys. Acta 1975, 405, 442-451. https://doi.org/10.1016/0005-2795(75)90109-9
  31. Baldi, P.; Brunak, S.; Chauvin, Y.; Andersen, C. A. F.; Nielsen, H. Bioinformatics 2000, 16, 412-424. https://doi.org/10.1093/bioinformatics/16.5.412
  32. Landis, J. R.; Koch, G. G. Biometrics 1977, 33, 159-174. https://doi.org/10.2307/2529310
  33. Maines, L. W.; Antonetti, D. A.; Wolpert, E. B.; Smith, C. D. Neuropharmacology 2005, 49, 610-617. https://doi.org/10.1016/j.neuropharm.2005.04.028
  34. Gerhard, F.; Ecker, G. F.; Stockner, T.; Chiba, P. Drug Discov. Today 2008, 13, 311-317 . https://doi.org/10.1016/j.drudis.2007.12.012
  35. Poole, K. J. Antimicrob. Chemother. 2005, 56, 20-51. https://doi.org/10.1093/jac/dki171
  36. Pajeva, I. K.; Wiese, M. J. Med. Chem. 2002, 45, 5671-5686. https://doi.org/10.1021/jm020941h
  37. van Tellingen, O. Toxicol. Lett. 2001, 120, 31-41. https://doi.org/10.1016/S0378-4274(01)00304-6
  38. Thiebaut, F.; Tsuruo, T.; Hamada, H.; Gottesman, M. M.; Pastan, I.; Willingham, M. C. Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 7735-7738. https://doi.org/10.1073/pnas.84.21.7735
  39. Gatlik-Landwojtowicz, E.; Aanismaa, P.; Seelig, A. Biochemistry 2006, 45, 3020-3032. https://doi.org/10.1021/bi051380+
  40. Romsicki, Y.; Sharom, F. J. Biochemistry 1999, 38, 6887-6896. https://doi.org/10.1021/bi990064q

Cited by

  1. Computational investigations of physicochemical, pharmacokinetic, toxicological properties and molecular docking of betulinic acid, a constituent of Corypha taliera (Roxb.) with Phospholipase A2 (PLA2) vol.18, pp.1, 2018, https://doi.org/10.1186/s12906-018-2116-x
  2. Theoretical Prediction of the Complex P-Glycoprotein Substrate Efflux Based on the Novel Hierarchical Support Vector Regression Scheme vol.23, pp.7, 2018, https://doi.org/10.3390/molecules23071820
  3. Development of a Hierarchical Support Vector Regression-Based In Silico Model for Caco-2 Permeability vol.13, pp.2, 2012, https://doi.org/10.3390/pharmaceutics13020174