DOI QR코드

DOI QR Code

A Study on the Extraction of Monasil PCA using Liquid CO2

액체 이산화탄소 이용한 Monasil PCA 추출에 대한 연구

  • Cho, Dong Woo (School of Chemcial and Biological Engineering and Institute of Chemical Process, Seoul National University) ;
  • Oh, Kyoung Shil (LG Chem Research Park, Division of Chemicals & Polymer) ;
  • Bae, Won (R&D Institute, Miwon Specialty Chemical Co., Ltd.) ;
  • Kim, Hwayong (School of Chemcial and Biological Engineering and Institute of Chemical Process, Seoul National University) ;
  • Lee, Kab-Soo (Environmental System Engineering, Kimpo College)
  • 조동우 (서울대학교 화학생물공학부 화학공정 신기술 연구소) ;
  • 오경실 (엘지화학 기술 연구원 석유화학 연구소) ;
  • 배원 (미원 스페셜티 케미컬 연구소) ;
  • 김화용 (서울대학교 화학생물공학부 화학공정 신기술 연구소) ;
  • 이갑수 (김포대학 환경보건과)
  • Received : 2012.02.06
  • Accepted : 2012.04.12
  • Published : 2012.08.01

Abstract

Poly(acrylic acid) (PAA) microspheres is one of the widely-used polymeric materials for the bio-field application and the electric materials. For the synthesis of PAA microspheres, the polymerization technique using surfactants is applied. After the synthesis, the purification and separation processes are required for the removal of surfactant. When general organic solvents were used, many problems, such as huge amount of waste solvent, additional separation processes, and the possibility of residual media, were occurred. Thus, High-pressure Soxhlet extraction using liquid $CO_2$ was developed to solve these problems. In this study, High-pressure Soxhlet extraction of the synthesized PAA microspheres using liquid $CO_2$ was conducted for the removal of Monasil PCA which is used for the dispersion polymerization of acrylic acid in compressed liquid Dimethyl ether (DME). The morphology of the extracted PAA particles was checked by field emission scanning electron microscopy (FE-SEM) and the residual concentration of Monasil PCA was analyzed by inductively coupled plasma - Optical Emission Spectrometer (ICP-OES). For studying the effect of the solvent effect, Soxhlet extraction was conducted using n-hexane, liquid DME, and liquid $CO_2$. In case of n-hexane, some extracted PAA microspheres were produced. However, deformation was also occurred due to the high thermal energy of n-hexane vapor. Liquid DME could not remove Monasil PCA. When using liquid $CO_2$, the extracted PAA microspheres which were free for the residual solvent were produced without deformation. For finding the optimum operating condition, high-pressure Soxhlet extraction was conducted for 8 hours with changing the temperature of reboiler and condenser. When the extractor temperature is $19.6{\pm}0.2^{\circ}C$ and the pressure is $51.5{\pm}0.5$ bar, the best removal efficiency was obtained.

Poly(acrylic acid) (PAA) 구형 입자는 바이오 분야의 소재에서부터 전자 재료에 이르기까지 다양한 분야에 사용되는 고분자 물질이다. 이를 생산하기 위해서는, 분산제(surfactant)를 이용한 중합 방법으로 합성을 한 후, 사용한 분산제를 제거하기 위한 별도의 Purification 과정을 거치게 된다. 일반 유기 용매를 사용하면 막대한 폐수 발생, 별도의 분리 공정 추가, 잔류 용매의 가능성 등의 문제점이 발생한다. 이에 이러한 문제를 해결하고자, 액체 이산화탄소를 용매로 하여, high-pressure Soxhlet extraction 방법을 개발하였다. 본 연구에서는 compressed liquid dimethyl ether (DME) 상에서 PAA 분산 중합에 사용된 pyrrolidene carboxylic acid-g-poly (siloxane) 계열의 분산제, Monasil PCA 제거하는 연구를 진행하였다. 추출된 PAA 입자의 모양은 field emission scanning electron microscopy (FE-SEM)으로 확인을 하였고, Monasil PCA의 농도는 Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES)로 분석하였다. 용매의 효과를 비교하기 위해서, 액체 이산화탄소와 n-hexane과 liquid DME를 대상으로 추출 실험을 하였다. 그 결과 n-hexane의 경우 일부 정제된 PAA 구형 입자를 얻을 수 있었지만, 일부는 n-hexane 증기의 높은 열에 의해서 변형된 형태의 입자를 얻었다. Liquid DME의 경우엔, 추출이 잘 되지 않았다. 액체 $CO_2$를 이용하는 경우에 구형의 형태는 유지하면서 분산제가 제거된 입자를 얻을 수 있었다. 그리고 최적 운전 조건을 알기 위해서 8시간 동안 재비기와 응축기의 온도를 달리하면서 실험을 실시하였다. 그 결과 추출기의 온도가 $19.6{\pm}0.2^{\circ}C$, 압력이 $51.5{\pm}0.5$ bar일 때, 가장 좋은 제거 효율을 보였다.

Keywords

Acknowledgement

Supported by : 한국 연구 재단

References

  1. Mark, J. E., Polymer Data Handbook, 2nd ed., Oxford University Press. New York, NY(1999).
  2. DeSimone, J. M., Maury, E. E., Menceloglu, Y. Z., McClain, J. B.; Romack, T. J. and Combes, J. R., "Dispersion Polymerizations in Supercritical Carbon Dioxide," Science, 265(5170), 356-359(1994). https://doi.org/10.1126/science.265.5170.356
  3. O'Neill, M. L., Yates, M. Z., Johnston, K. P., Smith, C. D. and Wilkinson, S. P., "Dispersion Polymerization in Supercritical $CO_2$ with a Siloxane-Based Macromonomer: 1. The Particle Growth Regime," Macromolecules, 31(9), 2838-2847(1998). https://doi.org/10.1021/ma971314i
  4. Christian, P., Howdle, S. M. and Irvine, D. J., "Dispersion Polymerization of Methyl Methacrylate in Supercritical Carbon Dioxide with a Monofunctional Pseudo-Graft Stabilizer," Macromolecules, 33(2), 237-239(2000). https://doi.org/10.1021/ma991268h
  5. Hourri, A., St-Arnaud, J. M. and Bose, T. K., "Solubility of Solids in Supercritical Fluids from the Measurements of the Dielectric Constant: Application to $CO_2$-naphthalene," Rev. Sci. Instrum., 69(7), 2732-2737(1998). https://doi.org/10.1063/1.1149007
  6. Bose, T. K. and Cole, R. H., "Dielectric and Pressure Virial Coefficients of Imperfect Gases. II. $CO_2$-Argon Mixtures," J. Chem. Phys., 52(1), 140-147(1970). https://doi.org/10.1063/1.1672658
  7. McClain, J. B., Betts, D. E., Canelas, D. A., Samulski, E. T., DeSimone, J. M., Londono, J. D., Cochran, H. D., Wignall, G. D., Chillura-Martino, D. and Triolo, R., "Design of Nonionic Surfactants for Supercritical Carbon Dioxide," Science, 274(5295), 2049-2052(1996). https://doi.org/10.1126/science.274.5295.2049
  8. Lacroix-Desmazes, P., Andre, P., Desimone, J. M., Ruzette, A.- V. and Boutevin, B., "Macromolecular Surfactants for Supercritical Carbon Dioxide Applications: Synthesis and Characterization of Fluorinated Block Copolymers Prepared by Nitroxidemediated Radical Polymerization," J. Polym. Sci. A: Polym. Chem., 42(14), 3537-3552(2004). https://doi.org/10.1002/pola.20193
  9. Yazdi, A. V., Lepilleur, C., Singley, E. J., Liu, W., Adamsky, F. A., Enick, R. M. and Beckman, E. J., "Highly Carbon Dioxide Soluble Surfactants, Dispersants and Chelating Agents," Fluid Phase Equilib., 117(1-2), 297-303(1996). https://doi.org/10.1016/0378-3812(95)02966-4