DOI QR코드

DOI QR Code

Effect of ZnCl2 Co-catalyst in the Synthesis of Dimethyl Carbonate from Ethylene Carbonate and Methanol by Using Base Catalysts

염기 촉매를 이용한 디메틸카보네이트 합성에서 ZnCl2 조촉매의 영향

  • Kim, Dong-Woo (School of Chemical and Biomolecular Engineering, Pusan National University) ;
  • Park, Moon-Seok (School of Chemical and Biomolecular Engineering, Pusan National University) ;
  • Kim, Moon-Il (School of Chemical and Biomolecular Engineering, Pusan National University) ;
  • Park, Dae-Won (School of Chemical and Biomolecular Engineering, Pusan National University)
  • 김동우 (부산대학교 화공생명공학부) ;
  • 박문석 (부산대학교 화공생명공학부) ;
  • 김문일 (부산대학교 화공생명공학부) ;
  • 박대원 (부산대학교 화공생명공학부)
  • Received : 2011.08.17
  • Accepted : 2011.10.21
  • Published : 2012.04.01

Abstract

The synthesis of dimethyl carbonate(DMC) is a promising reaction for the use of naturally abundant carbon dioxide. DMC has gained considerable interest owing to its versatile chemical reactivity and unique properties such as high oxygen content, low toxicity, and excellent biodegradability. In this study, the synthesis of DMC through the transesterification of ethylene carbonate(EC) with methanol was investigated by using ionic liquid and metal oxide catalysts. The screening test of different catalysts revealed that choline hydroxide ([Choline][OH]) and 1-n-butyl-3-methyl imidazolium hydroxide([BMIm][OH]) had better catalytic performance than metal salts catalysts such as MgO, ZnO and CaO. The effects of reaction parameters such as reaction temperature, MeOH/EC mole ratio, and carbon dioxide pressure on the reactivity of [Choline][OH] catalyst were discussed. High temperature and high MeOH/EC mole ratio were favorable for high conversion of EC. However, the yield of DMC showed a maximum when carbon dioxide pressure was 1.34 MPa, and then it decreased for higher carbon dioxide pressure. Zinc chloride($ZnCl_2$) was used as co-catalyst with the ionic liquid catalyst. The mixed catalyst showed a synergy effect on the EC conversion and DMC yield probably due to the acid-base properties of the catalysts.

이산화탄소를 이용하여 디메틸카보네이트(DMC)를 제조하는 반응은 지구온난화 현상의 주요 원인으로 지적되는 이산화탄소의 효율적 전환 방법의 하나로 주목 받고 있다. DMC는 유독한 포스겐과 디메틸슬페이트를 대체하는 반응 매개체, 가솔린 연료 첨가제, 폴리카보네이트 수지의 전구체 등으로 다양하게 활용되고 있다. 본 연구에서는 에틸렌카보네이트(EC)와 메탄올의 에스테르 교환반응에 의한 DMC의 제조 반응에 대하여 이온성 액체와 금속 촉매의 특성을 조사하였다. 촉매 스크리닝 실험 결과 [Choline][OH]와 [BMIm][OH]가 금속염인 MgO, ZnO, CaO보다 더 좋은 촉매 활성을 나타내었다. [Choline][OH] 촉매에 대해서 반응변수인 반응온도, MeOH/EC 몰비, 이산화탄소 압력이 반응에 미치는 영향을 고찰하였다. 반응온도가 높고 MeOH/EC 몰비가 클수록 EC의 전화율이 증가하였다. 그러나 이산화탄소 압력의 영향에서는 1.34 MPa에서 최고의 DMC 수율을 나타내었고 그 이상의 압력에서는 DMC 수율이 오히려 감소하였다. $ZnCl_2$를 조촉매로 사용한 경우 각각 촉매의 활성보다 더 높은 활성을 나타내어 시너지 효과가 관찰되었으며, 이것은 혼합촉매의 산-염기적 특성에 기인하는 것으로 판단된다.

Keywords

Acknowledgement

Supported by : 부산대학교

References

  1. Sakakura, S. and Kohno, K., "The Synthesis of Organic Carbonates from Dioxide," Chem. Commin., 1312-1300(2009).
  2. Shaikh, A. A. and Sivaram, S., "Organic Carbonate," Chem. Rev., 96, 951-976(1996). https://doi.org/10.1021/cr950067i
  3. Pacheco, M. A. and Marshall, C. L., "Review of Dimethyl Carbonate (DMC) Manufacture and Its Characteristics as a Fuel Additive," Energy Fuels, 11(1), 2-26(1997). https://doi.org/10.1021/ef9600974
  4. Ono, Y., "Catalysis in the Production and Reactions of Dimethyl Carbonate, an Environmentally Benign Building Block," Appl. Catal. A: Gen., 155, 133-166(1997). https://doi.org/10.1016/S0926-860X(96)00402-4
  5. Romano, U., "Dimethyl Carbonate and Its Production Technology," Chim. Ind., 75, 303-306(1993).
  6. Uchiumi, S., Ataka, K. and Matsuzaki, T., "Oxidative Reactions by a Palladium-alkyl Nitrite System," J. Organomet. Chem., 576, 279-289(1999). https://doi.org/10.1016/S0022-328X(98)01064-X
  7. Ahn, B. S., Lee, B. G., Kim, H. S. and Han, M. S., "Kinetics of Dimethyl Carbonate Synthesis from Ethylene Carbonate and Methanol Using Alkalimetal Compounds as Catalyst," React. Kinet. Catal. Lett., 73, 33-38(2001). https://doi.org/10.1023/A:1013904317108
  8. Kondoh, T., Okada, Y., Tanaka, F., Asaoka, S. and Yamanoto, S., "Method of Producing Dialkylcarbonate," U.S. Patent No. 5,436,362 (1995).
  9. Tatsumi, T., Watanabe, Y. and Koyano, K. A., "Synthesis of Dimethyl Carbonate from Ethylene Carbonate and Methanol using TS-1 as Solid Base Catalyst," Chem. Commun., 2281-2282(1996).
  10. Watanabe, Y. and Tatsumi, T., "Hydrotalcite-type Materials as Catalysts for the Synthesis of Dimethyl Carbonate from Ethylene Carbonate and Methanol," Micropor. Mesopor. Mater., 22, 399-407(1998). https://doi.org/10.1016/S1387-1811(98)00099-7
  11. Peppel, W. J., "Preparation and Properties of the Alkylene Carbonates," Ind. Eng. Chem., 50, 767-770(1958). https://doi.org/10.1021/ie50581a030
  12. Buysch, H. J. and Klausener, A., "Process for the Preparation of Dialkyle Carbonates," European Patent No. 499,924(1992).
  13. Knifton, J. F., "Process for the Synthesis of Ethylene Glycol and Dimethyl Carbonate," U.S. Patent No. 4,661,609(1987).
  14. Knifton, J. F. and Duranleau, R. G., "Ethylene Glycol-dimethyl Carbonate Cogeneration," J. Mol. Catal., 67, 389-399(1991). https://doi.org/10.1016/0304-5102(91)80051-4
  15. Romano, U. and Melis, U., "Process for the Preparation of Dialkyl Carbonates," U.S. Patent No. 4,062,884(1977).
  16. Pacheco, M. A., Darrington, F. D., Reier, J. C. and Alexander, B. D., "Reaction Extraction of Alkyl Carbonate," U.S. Patent No. 5,489,703(1996).
  17. Sheldon, R., "Catalytic Reactions in Ionic Liquids," Chem. Commun., 2399-2407(2001).
  18. Zhao, D. B., Wu, M., Kou, Y. and Min, E. Z., "Ionic Liquids: Applications in Catalysis," Catal. Today, 74, 157-189(2002). https://doi.org/10.1016/S0920-5861(01)00541-7
  19. Wasserscheid, P. and Keim, W., "Ionic Liquids-New "Solutions" for Transition Metal Catalysis," Angew. Chem. Int. Ed., 39(21), 3772-3789(2000). https://doi.org/10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5
  20. Jairton, D., Roberto, F. D. S. and Paulo, A. Z. S., "Ionic Liquid (molten salt) Phase Organometallic Catalysis," Chem. Rev., 102(10), 3667-3692(2002). https://doi.org/10.1021/cr010338r
  21. Marsh, K. N., Deev, A., Wu, A. C. T., Tran, E. and Klamt, A., "Room Temperature Ionic Liquids as Replacements for Conventional Solvents - a Review," Korean J. Chem. Eng., 19(3), 357-362 (2002). https://doi.org/10.1007/BF02697140
  22. Song, C. E., Shim, W. H., Roh, E. J. and Choi, J. H., "Scandium(III) Triflate Immobilised in Ionic Liquids: a Novel and Recyclable Catalytic System for Friedel-Crafts Alkylation of Aromatic Compounds with Alkenes," Chem. Commun., 1695-1696(2000).
  23. Mun, N. Y., Kim, K. H., Park, D. W., Choe, Y. and Kim, I., "Copolymerization of Phenyl Glycidyl Ether with Carbon Dioxide Catalyzed by Ionic Liquids," Korean J. Chem. Eng., 22, 556-559(2005). https://doi.org/10.1007/BF02706642
  24. Lee, E. H., Cha, S. W., Manju, M. D., Choe, Y., Ahn, J. Y. and Park, D. W., "Cycloaddition of Carbon Dioxide to Epichlorohydrin Using Ionic Liquid as a Catalyst," Korean J. Chem. Eng., 24(3), 547-550(2007). https://doi.org/10.1007/s11814-007-0097-4
  25. Manju, M. D., Ahn, J. Y., Lee, M. K., Shim, H. L., Kim, K. H., Kim, I. and Park, D. W., "Moderate Route for the Utilization of $CO_2$-Microwave Induced Copolymerization with Cyclohexene Oxide using Highly Efficient Double Metal Cyanide Complex Catalysts Based on $Zn_3[Co(CN)_6]$," Green Chem., 10(6), 678-684 (2008). https://doi.org/10.1039/b801132j
  26. Wei, T., Wang, m., Wei, W., Sun, Y. and Zhong, B., "Effects of Base Strength and Basicity on Catalytic Behavior of Solid Bases for Synthesis of Dimethyl Carbonate from Propylene Carbonate and Methanol," Fuel Process. Tech., 83, 175-172(2003). https://doi.org/10.1016/S0378-3820(03)00065-1
  27. Ahn, B. S., Lee, B. G., Kim, H. S. and Han, M. S., "Synthesis of Dimethyl Carbonate by Transesterification Reaction Between Carbonate and Methanol," Proc. 10th Asian Pacific Confederation of Chemical Engineers, 17-21 Oct., Kitakyushu, Japan(2004).
  28. De, C., Lu, B., Lv, H., Yu, Y., Bai, Y. and Cai, Q., "One-pot Synthesis If Dimethyl Carbonate from Methanol, Propylene Oxide and Carbon Dioxide over Supported Choline Hydroxide/MgO," Catal. Lett., 128, 459-464(2009). https://doi.org/10.1007/s10562-008-9773-1
  29. Bhanage, B. M., Fujita, S. I., Ikushima, Y., Torii, K. and Arai, M., "Synthesis of Dimethyl Carbonate and Glycols from Carbon Dioxide, Epoxides and Methanol Using Heterogeneous Mg Containing Smectite Catalysts: Efect of Reaction Variables on Activity and Selectivity Performance," Green Chem., 5, 71-75(2003). https://doi.org/10.1039/b207750g
  30. Murugan, C. and Bajaj, H. C., "Transesterification of Propylene Carbonate with Methanol Using Mg-Al-$CO_3$ Hydrotalcite as Solid Base Catalyst," Indian J. Chem., 49, 1182-1188(2010).
  31. Jung, K. T. and Bell, A. T., "An in situ Infrared Study of Dimethyl Carbonate Synthesis from Carbon Dioxide and Methanol Over Zirconia," J. Catal., 204, 339-347(2001). https://doi.org/10.1006/jcat.2001.3411
  32. Abott, A. P., Capper, G., Davies, D. L., Munro, H. L., Rasheed, R. K. and Tambyrajah, V., "Preparation of Novel, Moisture-stable, Lewis-acidic Ionic Liquids Containing Quaternary Ammonium Salts with Functional Side Chains," Chem. Commun., 2010-2011 (2010).