DOI QR코드

DOI QR Code

Controlling Effect of Agricultural Organic Materials on Phytophthora Blight and Anthracnose in Red Pepper

고추 역병과 탄저병에 대한 친환경유기농자재의 방제 효과

  • Park, Se-Jung (Department of Plant Medicine, College of Agriculture, Life Science and Environment, Chungbuk National University) ;
  • Kim, Ga-Hye (Department of Plant Medicine, College of Agriculture, Life Science and Environment, Chungbuk National University) ;
  • Kim, A-Hyeong (Department of Plant Medicine, College of Agriculture, Life Science and Environment, Chungbuk National University) ;
  • Lee, Ho-Taek (Department of Plant Medicine, College of Agriculture, Life Science and Environment, Chungbuk National University) ;
  • Gwon, Hyeon-Wook (Department of Plant Medicine, College of Agriculture, Life Science and Environment, Chungbuk National University) ;
  • Kim, Joo-Hyeng (Department of Plant Medicine, College of Agriculture, Life Science and Environment, Chungbuk National University) ;
  • Lee, Kyeong-Hee (Environment-friendly Research Division, Chungcheongbuk-do Agricultural Research and Extension Sevices) ;
  • Kim, Heung-Tae (Department of Plant Medicine, College of Agriculture, Life Science and Environment, Chungbuk National University)
  • Received : 2012.02.06
  • Accepted : 2012.03.15
  • Published : 2012.04.30

Abstract

A total of 20 agricultural organic materials including inorganic compounds, plant oils and plant extracts were used in the study for assessing the control efficacy on pepper diseases. Among inorganic compounds, only copper hydroxide showed inhibitory effect on both Phytophthora capsici causing Phytophthora blight and Colletotrichum acutatum causing anthracnose. Phosphorous acid inhibited the growth of P. capsici on PDA, and Sulfur/quicklime had it on that of C. acutatum. Plant essential oil, rosemary oil, and rapeseed oil among plant oils and plant extract of Japanese apricot/ginkgo nut inhibited the mycelial growth of the two pathogens. In the screening using pepper plant seedlings, the control efficacy on Phytophthora blight in 6-leaf stage of seedling was superior to that in 4-leaf stage of seedling. A protective effect on Phytophthora blight was displayed by copper hydroxide, sulfur/quicklime, water soluble calcium, phosphorous acid, plant essential oil, and cloves extract. When C. acutatum was inoculated by the non-wound method, copper hydroxide and rapeseed oil showed excellent protective activities with control values of 91.3% and 82.6%, respectively. However, copper hydroxide did not show any activity, when C. acutatum was inoculated after wounding pepper fruits. All organic materials never showed the curative effect on Phytophthora blight and anthracnose in pepper seedling assay and fruit assay.

친환경유기농자재로 등록되어 있는 농자재 중에서 무기염류, 오일류, 식물추출물, 그리고 키토산 등 총 20종을 선발하여 고추 역병과 탄저병에 대한 방제 효과를 조사하였다. 무기물류 중에서 수산화동은 배지상에서 역병균과 탄저병균의 생육을 모두 억제하였고, 아인산은 역병균의 생육만을, 그리고 황/생석회는 탄저병균의 생육만을 억제하였다. 식물정유, 로즈마리오일, 채종유, 그리고 매실/은행 추출물 역시 두 종류 식물병원균의 생장을 억제하였다. 고추 유묘를 이용한 역병 방제효과 검정에서는 4엽기의 유묘보다는 6엽기의 유묘에서 유기농자재의 효과가 효과가 우수하였다. 특히 수산화동, 황/생석회, 수용성칼슘, 아인산, 식물정유, 정향추출물 등이 80% 이상의 예방 효과를 보였다. 하지만 실험에 사용한 모든 유기농자재는 역병에 대해서 치료효과를 보이지 않았다. 열매를 이용한 탄저병에 대한 효과 검정에서도 대부분의 유기농자재는 치료 효과보다는 예방 효과가 우수하였다. 병원균을 무상처 접종하였을 때, 50% 이상의 효과를 보였던 수산화동, 황/생석회, 황산동/생석회, 과망간산칼륨, 식물정유, 채종유, 소리쟁이 추출물, 스테비아 추출물, 키토산 등은 병원균을 상처 접종할 경우 그 효과가 감소하여, 황/생석회, 채종유, 소리쟁이 추출물, 스테비아추출물 등에서만 79.9, 78.1, 66.6, 58.6%의 예방효과가 나타났다. 실험에 사용한 20종의 자재 중에서 수산화동에서만 병원균을 무상처 접종하였을 때, 75.6%의 치료효과를 보였다.

Keywords

References

  1. Ando, K., Hammar, S. and Grument, R. 2009. Age-related resistance of diverse cucurbit fruits to infection by Phytophthora capsici. J. Amer. Soc. Hort. Sci. 134: 176−182.
  2. Bower, L. A. and Coffey, M. D. 1985. Development of laboratory tolerance to phosphorous acid, fosetyl-Al and metalaxyl in Phytophthora capsici. Can. J. Plant Pathol. 7: 1-6. https://doi.org/10.1080/07060668509501507
  3. Chang, T. H., Lim, T. H., Kim, I. Y., Choi, G. J., Kim, J.-C., Kim, H. T., Lee, Y.-S. and Cho, K. Y. 2000. Effect of phosphorous acid on control of Phytophthora blight of red-pepper and tomato, and downy mildew of cucumber in the greenhouse. Korean J. Pestic. Sci. 4: 64-70.
  4. Coffey, M. D. and Bower, L. A. 1984. In vitro variability among isolates of eight Phytophthora species in response to phosphorous acid. Phytopathology 74: 738-742. https://doi.org/10.1094/Phyto-74-738
  5. Deliopoulos, T., Kettlewell, P. S. and Hare, M. C. 2010. Fungal disease suppression by inorganic salts: A review. Crop Prot. 29: 1059-1075. https://doi.org/10.1016/j.cropro.2010.05.011
  6. Fenn, M. E. and Coffey, M. D. 1984. Studies on the in vitro and in vivo antifungal activity of fosetyl-Al and phosphorous acid. Phytophathology 74: 606-611. https://doi.org/10.1094/Phyto-74-606
  7. Guest, D. I. and Gran, B. R. 1991. The complex action of phosphonates as antifungal agents. Biol. Rev. 66: 159-187. https://doi.org/10.1111/j.1469-185X.1991.tb01139.x
  8. Guevel, M.-H., Menzies, J. G. and Belanger, R. R. 2007. Effect of root and foliar applications of soluble silicon on powdery mildew control and growth of wheat plants. Eur. J. Plant Pathol. 119: 429-436. https://doi.org/10.1007/s10658-007-9181-1
  9. Hwang, B. K., Kim, Y. J. and Kim, C. H. 1996. Differential interactions of Phytophthora capsici isolates with pepper genotypes at various plant growth stages. Eur. J. Pl. Pathol. 102: 311-316. https://doi.org/10.1007/BF01878125
  10. Jee, H.-J., Cho, W.-D. and Kim, C.-H. 2002. Effect of potassium phosphonate on the control of Phytophthora root rot of lettuce in hydroponics. Plant Pathology J. 18: 142-146. https://doi.org/10.5423/PPJ.2002.18.3.142
  11. Kim, C. H. and Park, K. S. 1988. A predictive model of disease progression of red-pepper anthracnose. Korean J. Plant Pathol. 4: 325-331.
  12. Kim, C.-H. 2004. Review of disease incidence of major crops in 2003. Res. Plant Dis. 10: 1-7. (In Korean) https://doi.org/10.5423/RPD.2004.10.1.001
  13. Kim, Y. J., Hwang, B. K. and Park, K. W. 1989. Expression of age-related resistance in pepper plants infected with Phytophthora capsici. Plant Dis. 73: 745-747. https://doi.org/10.1094/PD-73-0745
  14. Kus, J. V., Zaton, K., Sarkar, R. and Cameron, R. K. 2002. Agerelated resistance in Arabidopsis is a developmentally regulated defense response to Pseudomonas syringae. Plant Cell 14: 479-490. https://doi.org/10.1105/tpc.010481
  15. Lee, J. S., Seo, S. T., Wang, T. C., Jang, H. I., Pae, D. H. and Engle, L. M. 2004. Effect of potassium silicate amendments in hydrophonic nutrient solution on the suppressing of Phytophthora blight (Phytophthora capsici) in pepper. Plant Pathology J. 20: 277-282. https://doi.org/10.5423/PPJ.2004.20.4.277
  16. Lee, Y.-S., Ryu, Y.-J., Cho, J.-S., Lim, T.-H. and Chang, T.-H. 2001. Effect of phosphorous acid on control of phytophthora blight of red pepper. Korean J. Environ. Agricul. 20: 180-185.
  17. Ouimette, D. G. and Coffey, M. D. 1989. Comparative antifungal activity of four phosphonate compounds against isolates of nine Phytophthora species. Phytopathology 79: 761-767. https://doi.org/10.1094/Phyto-79-761
  18. Pernezny, K., Nagata, R., Havranek, N. and Sanchez, J. 2007. Comparison of two culture media for determination of the copper resistance of Xanthomonas strains and their usefulness for prediction of control with copper bactericides. Crop Prot. 26: 1-7. https://doi.org/10.1016/j.cropro.2006.03.007
  19. Shin, H. J., Chen, Z. J., Hwang, J. M. and Lee, S. G. 1999. Comparison of pepper anthracnose pathogen from Korea and China. Plant Pathology J. 15: 323-329.
  20. Smith, D. H. and Littrell, R. H. 1980. Management of peanut foliar diseases with fungicides. Plant Dis. 64: 356-361. https://doi.org/10.1094/PD-64-356
  21. Solel, Z., Oren, Y. and Kimchi, M. 1997. Control of Alternaria brown spot of Minneola tangelo with fungicides. Crop Prot. 16: 659-664. https://doi.org/10.1016/S0261-2194(97)00042-2

Cited by

  1. Stabilization and Antifungal Activity of Isolated Symbiotic Bacteria from Entomopathogenic Nematodes vol.30, pp.3, 2015, https://doi.org/10.7841/ksbbj.2015.30.3.132
  2. Development of Biofungicide Using Bacillus sp. KBC1004 for the Control of Anthracnose of Red Pepper vol.21, pp.3, 2015, https://doi.org/10.5423/RPD.2015.21.3.208
  3. Protective Activity of the Mixtures of Pine Oil and Copper Hydroxide against Bacterial Spot and Anthracnose on Red Pepper vol.20, pp.3, 2014, https://doi.org/10.5423/RPD.2014.20.3.211
  4. Control of Pepper Anthracnose Caused by Colletotrichum acutatum using Alternate Application of Agricultural Organic Materials and Iminoctadine tris + thiram vol.19, pp.4, 2015, https://doi.org/10.7585/kjps.2015.19.4.428
  5. Envrionment-Friendly Effects of Espil and Copper Hydroxide for Prevention of Powdery Mildew on Cucumber, Tomato, and Red Pepper vol.20, pp.2, 2014, https://doi.org/10.5423/RPD.2014.20.2.095
  6. Control Effect of Phosphate Compounds on Phytophthora Blight and Anthracnose of Pepper vol.21, pp.1, 2017, https://doi.org/10.7585/kjps.2017.21.1.26
  7. Application of Volatile Antifungal Plant Essential Oils for Controlling Pepper Fruit Anthracnose by Colletotrichum gloeosporioides vol.31, pp.3, 2015, https://doi.org/10.5423/PPJ.OA.03.2015.0027
  8. ) in persimmon trees pp.2165-0616, 2019, https://doi.org/10.1080/01448765.2018.1526711
  9. Selection of Antifungal Bacteria Burkholderia lata CAB13001 for Control on Red Pepper Anthracnose and Its Control Efficacy in Field vol.26, pp.4, 2018, https://doi.org/10.11625/KJOA.2018.26.4.649