DOI QR코드

DOI QR Code

산소 민감 발광 염료를 이용한 마이크로 채널 내에서 배양되는 세포 주변의 산소 농도 측정

Method for the Measurement of Dissolved Oxygen in a Cell Culture Microchannel Using Oxygen-Sensitive Luminescence

  • 이승열 (한국산업기술대학교 지식기반에너지 대학원) ;
  • 진송완 (한국산업기술대학교 기계공학과)
  • Lee, Seung-Youl (Dept. of Mechanical System Engineering,Graduate School of Knowledge-Based Technology and Energy, Korea Polytechnic Univ.) ;
  • Jin, Song-Wan (Dept. of Mechanical System Engineering, Korea Polytechnic Univ.)
  • 투고 : 2011.12.30
  • 심사 : 2012.02.20
  • 발행 : 2012.05.01

초록

본 논문에서는 산소 민감 발광 염료를 이용하여 마이크로 채널 내에서 세포가 배양되고 있을 때 산소농도를 측정하였다. 현재까지 알려진 여러 산소 민감 발광 염료 중 본 논문에서는 물에 잘 녹으며 장 시간 동안 사용하여도 독성이 없는 것으로 알려진 $[Ru(bpy)_3]^{2+}$를 사용하였으며 이와 더불어 산소 민감 염료 측정법의 단점을 보완하기 위하여 칼세인 염료를 이용하여 두 염료의 밝기 비율을 구하여 농도를 측정하였다. SCOMS 카메라와 마이크로 채널을 이용하여 캘리브레이션을 실시하고 농도와 밝기와의 관계를 구하였으며 이 관계를 이용하여 세포가 배양되는 조건에서의 배양액의 산소농도를 측정하였다. 실험 결과 채널입구에서 점점 멀어질수록 마이크로 채널 내에서 산소농도는 점점 낮아진다는 것을 관찰 할 수 있었다.

In this study, we used an $O_2$-sensitive luminescent dye to measure the $O_2$ concentration of culture media around HeLa cells cultured in a microchannel. $[Ru(bpy)_3]^{2+}$, which dissolves easily in water and which has no phototoxic effect, was used as the $O_2$-sensitive dye. The ratiometric sensing method was applied by introducing calcein as the $O_2$-insensitive dye, in order to overcome the disadvantages of intensity-based sensing. By performing calibration with an amperometric $O_2$ sensor, we could calculate the exact concentration of $O_2$ in the culture media. We applied this technique to measure the $O_2$ concentration around the cultured cells in the microchannel. As expected, the $O_2$ concentration gradually decreased as the cells moved farther away from the channel. This method is expected to be applicable to the investigation of hypoxia, which occurs commonly in scaffolds.

키워드

참고문헌

  1. Jurek, W. D., 2001, "Interaction of Oxygen-Sensitive Luminescent Probes $Ru(phen)_3^{2+}$ and $Ru(bipy)_3^{2+}$ with Animal and Plant Cells in Vitro: Mechanism of Phototoxicity and Conditions for Non-Invasive Oxygen Measurements," Journal of Photo Chemistry and Photobiology B: Biology,Vol. 65, No.2-3, pp. 136-144. https://doi.org/10.1016/S1011-1344(01)00257-3
  2. Amao, Y. and Okura, I., 2003, "Optical Oxygen Sensing Materials: Chemisorption Film of Ruthenium(II) Polypyridyl Complexes Attached to Anionic Polymer," Sensors and Actuators B: Chemical, Vol. 88, No. 2, pp. 162-167. https://doi.org/10.1016/S0925-4005(02)00320-9
  3. Zhang, P., Guo, J., Pang, W. and Wang, Y., 2002, "Incorporation of Luminescent Tris (Bipyridine) Ruthenium(II) Complex in Mesoporous Silica Spheres and Their Spectroscopic and Oxygen-Sensing Properties," Materials Letters, Vol. 53, No. 6, pp. 400-405. https://doi.org/10.1016/S0167-577X(01)00514-6
  4. Wilson, D. F. and Cerniglia, G. J., 1992, "Localization of Tumors and Evaluation of Their State of Oxygenation by Phosphorescence Imaging," Cancer Research, Vol. 52, No. 14, pp. 3988-3993.
  5. Lam, R. H. W., Kim, M.-C. and Thorsen, T., 2009, "Culturing Aerobic and Anaerobic Bacteria and Mammalian Cells with a Microfluidic Differential Oxygenator," Analytical Chemistry, Vol. 81, No. 14, pp. 5918-5924. https://doi.org/10.1021/ac9006864
  6. Nock, V., Blaikie, R. J. and David, T., 2008, "Patterning, Integration and Characterisation of Polymer Optical Oxygen Sensors for Microfluidic Devices," Lab on a Chip, Vol. 8, No. 8, pp. 1300-1037. https://doi.org/10.1039/b801879k
  7. Chang-Yen, D. A., Badardeen, A. and Gale, B. K., 2007, "Spin-Assembled Nano Films for Gaseous Oxygen Sensing," Sens. Actuators, B, Vol. 120, No. 2, pp. 426-433. https://doi.org/10.1016/j.snb.2006.02.045
  8. O'Donovan, C., Hynes, J., Papkovsky, D. B. and Yashunski, D., 2005, "Phosphorescent Oxygen-Sensitive Materials for Biological Applications," Journal of Materials Chemistry, Vol. 15, No. 27-28, pp. 2948-2951.
  9. Hartmann, P., Holst, G., Lubbers, D. W. and Ziegler, W., 1997, "Oxygen Flux Fluorescence Lifetime Imaging," Sens. Actuators B Chem.,Vol. 38, No. 1-3, pp. 110-115. https://doi.org/10.1016/S0925-4005(97)80179-7
  10. Park, E. J., Kennedy, R. T, Kopelman, R., Reid, K. R. and Tang, W., 2005, "Ratio Metric Fiber Optic Sensors for the Detection of Inter- and Intra-Cellular Dissolved Oxygen," Journal of Materials Chemistry, Vol. 15, No. 27-28, pp. 2913-2919. https://doi.org/10.1039/b502981c

피인용 문헌

  1. Ratiometric Dissolved Oxygen Sensors Based on Ruthenium Complex Doped with Silver Nanoparticles vol.17, pp.3, 2017, https://doi.org/10.3390/s17030548