DOI QR코드

DOI QR Code

강원도 간성-현내 지역 화강암류 비탈면 안정성 검토 사례 연구

Case Study of a Stability Analysis of a Granitoid Slope in the Gansung-Hyunnae area, GangwonDo

  • 김홍균 (한국건설기술연구원 Geo-인프라연구실) ;
  • 김승현 (한국건설기술연구원 Geo-인프라연구실) ;
  • 옥영석 (한국건설기술연구원 Geo-인프라연구실) ;
  • 구호본 (한국건설기술연구원 Geo-인프라연구실)
  • Kim, Hong-Gyun (Geotechnical Engineering Research Division, Korea Institute of Construction Technology) ;
  • Kim, Seung-Hyun (Geotechnical Engineering Research Division, Korea Institute of Construction Technology) ;
  • Ok, Young-Seok (Geotechnical Engineering Research Division, Korea Institute of Construction Technology) ;
  • Koo, Ho-Bon (Geotechnical Engineering Research Division, Korea Institute of Construction Technology)
  • 투고 : 2012.09.10
  • 심사 : 2012.09.25
  • 발행 : 2012.09.28

초록

화강암류 암석은 일반적으로 절리 발달이 미약하고 단층파쇄대가 잘 발달하지 않는 등 공학적으로 양질의 암석에 해당된다. 그러나 산학지구 붕괴 비탈면을 구성하는 지반은 화강암류로 구성되었음에도 불구하고, 깊은 토사층을 가지며, 불연속면이나 단층 등의 지질구조는 거의 관찰되지 않고, 표층붕괴가 발생한 형태에 해당된다. 본 비탈면의 안정성 고찰을 위해 3가지 경우(현재 단면, 최초 설계 단면, 수정 설계 단면)에 대한 강우지속시간과 간극수압 변화, 안전율 등에 관한 해석을 수행하였다. 강우 지속시간이 길어질수록 지하수위는 높이 20 m까지 상승하는 것으로 나타났으며, 최초 설계단계 단면의 2일 지속강우 기간에는 안전율이 확보되는 것으로 확인되지만, 4일 강우지속기간 동안에는 허용안전율을 만족하지 못하는 것으로 확인되었다. 수정 설계 단면에서는 4일 강우지속기간에도 안전율이 확보되므로 산학 지구는 1:1.8 경사도로 절취하는 것이 영구적인 안정성을 확보하는 방안이라고 판단된다.

Granitoid rocks are generally high-quality rock from a geotechnical perspective, because they rarely contain systematic joints or fragmented fault zones. Although the rock type at the Sanhak site is granite, a collapsed slope has a deep soil layer and shows no residual structures such as discontinuities or faults; surface avalanches from this slope can be observed in several places. To study the stability of this slope, we investigated rainfall duration, variation in pore-water pressure, and the factor of safety considering three cases (current cross-section, initial planning cross-section, revised planning cross-section). With increasing duration of rainfall, the groundwater level rises, up to 20 m in height from ground surface. In the initial planning cross-section, safety was secure for rainfall of 2 days duration, but inadequate for rainfall of 4 days duration. In the revised planning cross-section, however, safety factors were secure for rainfall of 4 days duration. Therefore, to ensure permanent stability at the Sanhak site, a slope degree of 1:1.8 should be maintained during cutting.

키워드

참고문헌

  1. Adams, J.A., Campbell, A.S., and Cutler, E.J., 1975, Some properties of a chrono-toposequence of soils from granite in New Zealand, 1. profile weights and general composition, Geoderma, 13, 23-40. https://doi.org/10.1016/0016-7061(75)90036-1
  2. Cheong, C.S. and Kim, N.H., 2012, Review of Radiometric Ages for Phanerozoic granitoids in Southern Korean Peninsula, The Journal of Petrological Society of Korea, 21(2), 263-275 (in Korean). https://doi.org/10.7854/JPSK.2012.21.2.173
  3. Chigira, M., 2001, Micro-sheeting of granite and its relationship with landsliding specifically after the heavy rainstorm in June 1999, Hiroshima Prefecture, Japan, Engineering Geology, 59, 219-231. https://doi.org/10.1016/S0013-7952(00)00075-2
  4. Cho, D.L., Hong, S.H., Chwae, U., Lee, B.J., and Choi, P.Y., 1998, Geological Report of the Goseong-Ganseong Sheet, Korea Institute of Geology, Mining and Materials, 59 (in Korean).
  5. Choi, J.H. and Chae, B.G., 2012, Experimental Study on the Deformation and Failure Behavior of Tono Granite, The Journal of Engineering Geology, 22(2), 173- 183 (in Korean). https://doi.org/10.9720/kseg.2012.22.2.173
  6. Dearman, W.R., Baynes, F.J., and Irfan, T.Y., 1978, Engineering grading of weathered granite, Engineering Geology, 12, 345-374. https://doi.org/10.1016/0013-7952(78)90018-2
  7. Han, M., Kim, S.W., Yang, K.H., and Kim, J.S., 2010, Petrological Study of the Dioritic and Granitic Rocks from Geochang Area, The Journal of Petrological Society of Korea, 19(3), 167-180 (in Korean).
  8. Jeoung, J.H., Yu, J., Kim, J.M., Kim, S.H., and Lim, K.S., 2011, Suitability for Subgrade Material of Weathered Granite Soils in the Gansung area of Gangwon-do, The Journal of Engineering Geology, 21(3), 239-246 (in Korean). https://doi.org/10.9720/kseg.2011.21.3.239
  9. Jin, M.S., Gleadow, A.J.W., and Lovering, J.F., 1984, Fission Track Dating of Apatite from the Jurassic and Cretaceous Granites in South Korea, The Journal of the Geological Society, 20(4), 257-265 (in Korean).
  10. Kil, Y.H., Shin, H.J., Ko, J.S., Yoon, S.H., Ko, B.G., and Kwon, S.G., 2008, Magma Uprising Path of Unbongsan Vocanic Rock in Gangwon Gosung, The Korean Earth Science Society, 2008 Spring Seminar, 27 (in Korean).
  11. Kim, C., Ko, H.J., Lee, S.H., Lee, C.B., Choi, S.J, and Park, K.H., 2001, 1:250,000 Explanatory Note of The Gangreung-Sokcho Sheet, Korea Institute of Geoscience and Mineral Resources, 1-76 (in Korean).
  12. Kim, D.H., 2010, Unsaturated Characteristics and Slope Stability Analysis of Weathered.Granitic Soils, Master's thesis, Gangwon National University, 1-68 (in Korean).
  13. Kim, D.H., Sagong, M., and Lee, Y.H., 2005, Effect of fine aggregate content on the mechanical properties of the compacted decomposed granitic soils, Construction and Building Materials, 19, 189-196. https://doi.org/10.1016/j.conbuildmat.2004.06.002
  14. Kim, G.Y., Ko, Y.G., Bae, D.S., Kim, C.S., and Park, G.W., 2004, Petrochemistry of Biotite-granite and deep core in Gosung-Sokcho Gangwon area, The Geological Society of Korea, 2004 Fall Seminar, 102 (in Korean).
  15. Kim, J.S., Kim, K.K., Jwa, Y.J., and Son, M., 2012, Cretaceous to Early Tertiary Granites and Magma Mixing in South Korea : Their Spatio-temporal Variations and Tectonic Implications(Multiple Slab Window Model), The Journal of Petrological Society of Korea, 21(2), 203-216 (in Korean). https://doi.org/10.7854/JPSK.2012.21.2.203
  16. Kretzschmar, R., Robarge, W.P., Amoozegar, A., and Vepraskas, M.J., 1997, Biotite alteration to halloysite and kaolinite in soil-saprolite profiles developed from mica schist and granite gneiss, Geoderma, 75, 155- 170. https://doi.org/10.1016/S0016-7061(96)00089-4
  17. Lan, H.X., Hu, R.L., Yue, Z.Q., Lee, C.F., and Wang, S.J., 2003, Engineering and geological characteristics of granite weathering profiles in South China, Journal of Asian Earth Sciences, 21, 353-364. https://doi.org/10.1016/S1367-9120(02)00020-2
  18. Lee, K.S., Kim, J.S., Choi, J.W., and Lee, C.S., 2011a, An Experimental Study on Crack Propagation in KURT Granite using Acoustic Emission, The Journal of Engineering Geology, 21(4), 295-304 (in Korean). https://doi.org/10.9720/kseg.2011.21.4.295
  19. Lee, M.S., Kim, M.I., Baek, J.N., and Han, B.K., 2011b, Calculating the Uniaxial Compressive Strength of Granite from Gangwon Province using Linear Regression Analysis, The Journal of Engineering Geology, 21(4), 361-367 (in Korean). https://doi.org/10.9720/kseg.2011.21.4.361
  20. Lee, S.J., Lee, C.H., Jang, H.S., and Kim, J.S., 2011c, Physical Properties of and Joint Distribution Within the Cheongju Granitic Mass, as Assessed from Drillcore and Geophysical Well-logging Data, The Journal of Engineering Geology, 21(4), 361-367. https://doi.org/10.9720/kseg.2011.21.4.361
  21. Ministry of Land, Transport and Maritime Affairs (MLTM), 2011, The Slope Establishment and Design on Construction Work, 32 (in Korean).
  22. Na, K.C., 1990, Petrological Study on the Metamorphosed Plutonic Rocks of Northwestern Ogcheon Zone, The Journal of the Geological Society, 26(5), 461-470.
  23. Negrel, P., 2006, Water-granite interaction: Clues from strontium, neodymium and rare earth elements in soil and waters, Applied Geochemistry, 21, 1432- 1454. https://doi.org/10.1016/j.apgeochem.2006.04.007
  24. Olowolafe, E.A. and Dung, J.E., 2000, Soils derived from biotite-granites on the Jos Plateau, Nigeria: their nutrient status and management for sustainable agriculture, Resources Conservation and Recycling, 29, 231-244. https://doi.org/10.1016/S0921-3449(00)00043-4
  25. Park, M.R. and Kim, K.H., 1982, The Petrochemical Study of the Granitoids in South Korea, The Journal of the Geological Society, 18(3), 132-148 (in Korean).
  26. Savage, D., 1986, Granite-water interactions at $100{^{\circ}C}$, 50 MPa: An experimental study, Chemical Geology, 54, 81-95. https://doi.org/10.1016/0009-2541(86)90073-2
  27. Seol, S.J., Kim, J.H., Cho, S.J., Yi, M.J., and Chung, S.H., 2001, Application of Radar Survey to a Granite Quarry Mine, The Journal of Korea Society of Earth and Exploration Geophysics, 4(1), 8-18 (in Korean).
  28. Shalkowski, A., Kodama, Y., and Nakano, S., 2009, The assessment of weathering stages in granites using an EC/pH meter, Geomorphology, 105, 253-260. https://doi.org/10.1016/j.geomorph.2008.10.002
  29. Shimazaki, H. and Lee, M.S., 1981, Reconnaissance on I-and S-type Granitoids in Southern Korea, Jour. Geol. Soc. Korea, 17(3), 189-193.
  30. Yun, H.S., Hong, S.S., Park, D.W., and Lee, J.Y., 2012, Applied Petrologic Study of the Daebo Biotite Granites in the mid Gyeonggi Massif, The Journal of Petrological Society of Korea, 21(2), 263-275 (in Korean). https://doi.org/10.7854/JPSK.2012.21.2.263