DOI QR코드

DOI QR Code

마이크로 유체 원심분리기의 챔버 크기에 따른 회전 유동 가시화

Visualization of Rotational Flow for Chamber Size of a 2×2 Microfluidic Centrifuge

  • 투고 : 2012.12.03
  • 심사 : 2012.12.11
  • 발행 : 2012.12.31

초록

This paper introduces a new parameter to design the $2{\times}2$ microfluidic centrifuge with single flow rotation positioned at the center of microchamber. The dimensional centrifugal acceleration momentum flux which is defined as the interfacial momentum flux divided by distance from the center of the chamber explains the flow rotation and its threshold provides a reference to expect single flow rotation. Through the numerical and experimental visualization of the flow rotation, the number and position of flow rotation in the $2{\times}2$ microfluidic centrifuge were examined. At a channel width of $50{\mu}m$ and chamber width of $250{\mu}m$, single flow rotation was obtained over at a Reynolds number of 300, while at a channel width of $100{\mu}m$ and chamber width of $500{\mu}m$, single flow rotation did not appear. The numerical analysis showed that the threshold centrifugal acceleration momentum flux to obtain single flow rotation was $3500kg/m{\cdot}s^2$.

키워드

참고문헌

  1. K. K. Gunter, T. E. Gunter, A. Jarkowski, and R. N. Rosier, "A method of resuspending small vesicles from suspension by protamine aggregation and centrifugation," Anal. Biochem., vol. 120, pp. 113-124, 1982. https://doi.org/10.1016/0003-2697(82)90326-8
  2. J. Yang, Y. Huang, X. B. Wang, F. F. Becker, and P. R. Gascoyne, "Differential analysis of human leukocytes by dielectrophorestic field-flow-fractionation," Biophys. J., vol. 79, pp. 2680-2689, 2000.
  3. E. Chmela and R. Tijssen, "A chip system for size separation of macromolecules and particles by hydrodynamic chromatography," Anal. Chem., vol. 74, pp. 3470-3475, 2002. https://doi.org/10.1021/ac0256078
  4. B. H. Kwon, H. H. Kim, J. Cha, C. H. Ahn, T. Arakawa, S. Shoji, and J. S. Go, "Improvement of the size-selective separation of microbeads in a curved microchannel using particle focusing," Jpn. J. Appl. Phys., vol. 50, pp. 097301, 2011. https://doi.org/10.1143/JJAP.50.097301
  5. D. W. Inglis, J. A. Davis, R. H. Austinb, and J. C. Sturm, "Critical particle size for fractionation by deterministic lateral displacement," Lab Chip, vol. 6 pp. 655-658, 2006. https://doi.org/10.1039/b515371a
  6. D. H. Yoon, Y. K. Bahk, B. H. Kwon, S. S. Kim, Y-D. Kim, T. Arakawa, J. S. Go, and S. Shoji, "Improvement of filtration performance using self-turning of flow resistance," Jpn. J. Appl. Phys., vol. 50, pp. 017201, 2011. https://doi.org/10.1143/JJAP.50.017201
  7. J. H. Lee, J. B. Ha, Y. K. Bahk, S. H. Yoon, T. Arakawa, J. S. Ko, B. S. Shin, S. Shoji, and J. S. Go, "Microfluidic centrifuge of nano-particles using rotating flow in a microchamber," Sens. Actuators B, vol. 132 pp. 525-530, 2008. https://doi.org/10.1016/j.snb.2007.11.027