DOI QR코드

DOI QR Code

Holographic Microscopy Measurement of Inertia Migration Phenomena of Phytoplankton in Pipe Flows

식물성 플랑크톤의 관유동 내 횡방향 이동현상에 대한 홀로그래픽 실험 연구

  • 임승민 (포항공과대학교 기계공학과 대학원) ;
  • 이상준 (포항공과대학교 기계공학과)
  • Received : 2012.11.08
  • Accepted : 2012.12.05
  • Published : 2012.12.31

Abstract

Inertial migration phenomena of phytoplankton in pipe flows were investigated using a digital holography technique. As the Reynolds number increases, the microorganisms suspended in a pipe flow are focused at a certain radial position which is called equilibrium position or pinch point. In this study, the effects of the size of microorganism and Reynolds number in the range of 1 < Re < 78 on the inertial migration were investigated and the results are compared with those for solid particles under similar experimental conditions. As a result, the equilibrium position for the elastic microorganisms is not so distinct, compared to the solid particles. This results from deformation of elastic body shape caused by shear-gradient of surrounding flow.

Keywords

References

  1. Serge G., Silberberg A., 1961, "Radial particle displacements in Poiseuille flow of suspensions", Nature, Vol. 89, pp. 209-210.
  2. Bhagat A. A. S., Kuntaegowdanahalli S. S., Papautsky I., 2009, "Inertial microfluidics for continuous particle filtration and extraction", Microfluid. Nanofluid., Vol. 7, pp. 217-226. https://doi.org/10.1007/s10404-008-0377-2
  3. Segre G., Silberberg A., 1962, "Behaviour of macroscopic rigid spheres in Poiseuille flow. 2. Experimental results and interpretation", J. Fluid Mech., Vol. 14, pp. 136-157. https://doi.org/10.1017/S0022112062001111
  4. KMCC hompage: http://www.kmmcc.re.kr
  5. Oliver D. R., 1962, "Influence of particle rotation on radial migration in the Poiseuille flow of suspensions", Nature, Vol. 194, pp. 1269-1271.
  6. Tuson H. H., Auer G. K., Renner L. D., Hasebe M., Tropini C., Salick M., Crone W. C., Gopinathan A., Huang K. C, Weibel D, B., 2012, "Measuring the stiffness of bacterial cells from growth rates in hydrogels of tunable elasticity", Mol Microbiol. Vol. 84, pp. 874-91. https://doi.org/10.1111/j.1365-2958.2012.08063.x
  7. Engineering Tool Box homepage: http://www.engineeringtoolbox.com/young-modulus-d_417.html.
  8. Ho B. P., Leal L. G., 1974, "Inertial migration of rigid spheres in two-dimensional unidirectional flows", J Fluid Mech., Vol. 65, pp. 365-400. https://doi.org/10.1017/S0022112074001431
  9. Schonberg J. A., Hinch E. J., 1989, "Inertial migration of a sphere in Poiseuille flow", J Fluid Mech., Vol. 203, pp. 517-524 https://doi.org/10.1017/S0022112089001564
  10. Matas J, Moris J. F., Guazzelli E., 2004, "Inertial migration of rigid spherical particles in Poiseuille flow", J Fluid Mech, Vol. 515, pp. 171-195. https://doi.org/10.1017/S0022112004000254
  11. Kim Y. W., Yoo J. Y., 2009, "Three-dimensional focusing of red blood cells in microchannel flows for bio-sensing applications", Biosens Bioelectrons, Vol. 24, pp. 3677-3682. https://doi.org/10.1016/j.bios.2009.05.037
  12. Hur S. C., Choi S. E., Kwon S. H., Carlo D. D., 2011, "Inertia focusing of no-spherical microparticles", APL, Vol. 99, pp.044101-1.
  13. Choi Y. S., Lee S. J., 2010, "Holographic analysis of three-dimensional inertial migration of spherical particles in micro-scale pipe flow", Microfluidics and Nanofluidics, Vol. 9, pp. 819-829. https://doi.org/10.1007/s10404-010-0601-8