DOI QR코드

DOI QR Code

만곡부에서 이론식에 기반한 횡분산계수 경험공식 개발

Development of Empirical Formula for Transverse Dispersion Coefficient Based on Theoretical Equation in River Bends

  • 백경오 (국립한경대학교 토목공학과)
  • 투고 : 2012.09.18
  • 심사 : 2012.11.06
  • 발행 : 2012.11.15

초록

본 연구에서는 이론적 배경을 토대로 사행 하천의 만곡부에 적용하기 용이한 횡분산계수 경험공식을 새롭게 제안하였다. 차원해석을 통한 독립변수들의 선정 대신 이론식을 기반으로 독립변수들과 그들의 함수형태를 우선 결정하였다. 결정된 함수식에서 매개변수를 골라내고 이를 고정하는 대신 회귀계수로 전환하여 실제 하천 만곡부에 적합한 경험식을 비선형회귀분석을 통해 제안하였다. 기존의 횡분산계수식들과 비교해 보면 본 연구에서 개발된 식이 관측 분산계수와 대체적으로 일치하는 경향을 보였다. 개발된 식의 특징을 살펴보면 마찰항에 대한 민감도가 상대적으로 적어 조도가 작은 하천에도 적용하기에 무리가 없어 보인다. 또한 개발된 식은 수심 대비 사행반경의 비가 큰 경우에도 기존의 추정식처럼 이상치를 나타낼 우려가 없어 만곡이 심한 사행하천에 적용하기 적합하다.

In this study, a new empirical equation for the transverse dispersion coefficient has been developed based on the theoretical background in river bends. The nonlinear least-square method was applied to determine regression coefficients of the equation. The estimated dispersion coefficients derived by the new equation were compared with observed transverse dispersion coefficients acquired from natural rivers and coefficients calculated by the other existing empirical equations. From a comparison of the existing transverse dispersion equations and the new proposed equation, it appears that the behavior of the existing formula in a relative sense is very much dependent on the friction factor and the river geometry. However, the new proposed equation does not vary widely according to variation of friction factor. Also, it was revealed that the equation proposed in this study becomes an asymptotic curve as the curvature effect increases.

키워드

참고문헌

  1. 백경오, 서일원(2007) 전단류에 의한 횡분산계수의 산정, 대한토목학회논문집, 대한토목학회, 제27권 제1B호, pp. 21-28.
  2. Almquist, C.W. and Holley, E.R. (1985) Transverse mixing in meandering laboratory channels with rectangular and naturally varying cross sections. Technical Report CRWR-205, Univ. of Texas, Austin, Texas.
  3. Baek, K.O. and Seo, I.W. (2011) Transverse dispersion caused by secondary flow in curved channels. J. of Hydraulic Engineering, Vol. 137, No. 10, pp. 1126-1134. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000428
  4. Baek, K.O., Seo, I.W., and Jung, S.J. (2006) Evaluation of dispersion coefficients in meandering channels from tansient tracer tests, J. of Hydraulic Engineering, Vol. 132, No. 10, pp. 1021-1032. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:10(1021)
  5. Boxall, J.B. and Guymer, I. (2003) Analysis and prediction of transverse mixing coefficients in natural channels. J. of Hydraulic Engineering, Vol. 129, No. 2, pp. 129-139. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:2(129)
  6. Elder, J.W. (1959) The dispersion of marked fluid in turbulent shear flow. J. of Fluid Mechanics, Vol. 5, pp. 544-560. https://doi.org/10.1017/S0022112059000374
  7. Fischer, H.B. (1967) Transverse mixing in a sand-bed channel. Professional Paper No. 575-D, U.S. Geological Survey.
  8. Fischer, H.B. (1969) The effect of bends on dispersion coefficients in streams. Water Resources Research, Vol. 5, pp. 496-506. https://doi.org/10.1029/WR005i002p00496
  9. Fischer, H.B., List, E.J., Koh, R.C.Y., Imberger, J., and Brooks, N.H. (1979) Mixing in inland and coastal waters. Academic Press, New York
  10. Holley, E.R., Siemons, J., and Abraham, G. (1972) Some aspects of analyzing transverse diffusion in rivers. J. of Hydraulic Research, Vol. 10, No. 1, pp. 27-57. https://doi.org/10.1080/00221687209500018
  11. Holly, F.M. and Nerat, G. (1983) Field calibration of stream-tube dispersion model. J. of Hydraulic Engineering, Vol. 109, No. 11, pp. 1455-1470. https://doi.org/10.1061/(ASCE)0733-9429(1983)109:11(1455)
  12. Jeon, T.M., Baek, K.O., and Seo, I.W. (2007) Development of an empirical equation for the transverse dispersion coefficient in natural streams. Environmental Fluid Mechanics, Vol. 7, No. 4, pp. 317-329. https://doi.org/10.1007/s10652-007-9027-6
  13. Lau, Y.L. and Krishnappan, B.G. (1981) Modeling transverse mixing in natural streams. J. of Hydraulic Division, Vol. 107, No. HY2, pp. 209-226.
  14. Odgaard, A.J. (1986) Meander-flow model I: Development. J. of Hydraulic Engineering, Vol. 112, No. 12, pp. 1117-1136. https://doi.org/10.1061/(ASCE)0733-9429(1986)112:12(1117)
  15. Rozovskii, I.L. (1957) Flow of water in bends of open channels. Academy of Science of Ukrainian SSR, Russia.
  16. Rutherford, J.C. (1994) River Mixing. John Wiley and Sons, Chichester, UK.
  17. Sayre, W.W. (1979) Shore-attached thermal plumes in rivers. In: Shen HW (ed) Modelling in Rivers. Wiley-Interscience, London.
  18. Seo, I.W. and Baek, K.O. (2004) Estimation of the longitudinal dispersion coefficient using the velocity profile in natural streams. J. of Hydraulic Engineering, Vol. 130, No. 3, pp. 227-236. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:3(227)
  19. Seo, I.W., Baek, K.O., and Jeon, T.M. (2006) Analysis of transverse mixing in natural streams under slug tests. J. of Hydraulic Research, Vol. 44, No. 3, pp. 350-362. https://doi.org/10.1080/00221686.2006.9521687
  20. Yotsukura, N. and Sayre, W.W. (1976) Transverse mixing in natural channels. Water Resources Reseach, Vol. 12, No. 4, pp. 695-704. https://doi.org/10.1029/WR012i004p00695