DOI QR코드

DOI QR Code

An Anti-inflammatory Peptide Isolated from Seahorse Hippocampus kuda bleeler Inhibits the Invasive Potential of MG-63 Osteosarcoma Cells

  • Yang, Yun-Ji (Department of Chemistry, Pukyong National University) ;
  • Kim, Se-Kwon (Department of Chemistry, Pukyong National University) ;
  • Park, Sun-Joo (Department of Chemistry, Pukyong National University)
  • Received : 2011.12.15
  • Accepted : 2012.01.30
  • Published : 2012.03.30

Abstract

Osteosarcoma is the most common primary malignancy of bone, and patients often develop pulmonary metastasis. The mechanisms underlying osteosarcoma metastasis remain to be elucidated. Recently, anti-inflammatory agents were shown to be useful in the treatment of tumor progression. We previously isolated a natural anti-inflammatory peptide from the seahorse Hippocampus kuda bleeler. Here, we examined the antitumor metastatic activity of this peptide and investigated its mechanism. The peptide significantly inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced invasive migration of human osteosarcoma MG-63 cells. Its inhibitory effect on invasive migration was associated with reduced expression of matrix metalloproteinases (MMP1 and MMP2). In addition, TPA stimulation increased intracellular reactive oxygen species (ROS) generation and small GTPase Rac1 expression, whereas the peptide decreased ROS generation and Rac1 activation. Taken together, these results suggest that the peptide inhibits invasive migration of MG-63 osteosarcoma cells by inhibiting MMP1 and MMP2 expression through downregulation of Rac1-ROS signaling.

Keywords

References

  1. Ambrosone CB. 2000. Oxidants and antioxidants in breast cancer. Antioxid Redox Signal 2, 903-917. https://doi.org/10.1089/ars.2000.2.4-903
  2. Arii S, Mise M, Harada T, Furutani M, Ishigami S, Niwano M, Mizumoto M, Fukumoto M and Imamura M. 1996. Overexpression of matrix metalloproteinase 9 gene in hepatocellular carcinoma with invasive potential. Hepatology 24, 316-322. https://doi.org/10.1002/hep.510240206
  3. Aslan M and Ozben T. 2004. Reactive oxygen and nitrogen species in Alzheimer's disease. Curr Alzheimer Res 1, 111-119. https://doi.org/10.2174/1567205043332162
  4. Bokoch GM and Knaus UG. 2003. NADPH oxidases: not just for leukocytes anymore!. Trends Biochem Sci 28, 502-508. https://doi.org/10.1016/S0968-0004(03)00194-4
  5. Boonstra J and Post JA. 2004. Molecular events associted with reactive oxygen species and cell cycle progression in mammalian cells. Gene 337, 1-13. https://doi.org/10.1016/j.gene.2004.04.032
  6. Chambers AF and Matrisian LM. 1997. Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst 89, 1260-1270. https://doi.org/10.1093/jnci/89.17.1260
  7. Chen XJ, Duan FD, Zhang HH, Xiong Y and Wang J. 2012. Sodium selenite-induced apoptosis mediated by ROS attack in human osteosarcoma U2OS cells. Biol Trace Elem Res 145, 1-9. https://doi.org/10.1007/s12011-011-9154-2
  8. Chiarugi P. 2003. Reactive oxygen species as mediators of cell adhesion. Ital J Biochem 52, 28-32.
  9. Coussens LM and Werb Z. 2002. Inflammation and cancer. Nature 420, 860-867. https://doi.org/10.1038/nature01322
  10. Datta R, Yoshinaga K, Kaneki M, Pandey P and Kufe D. 2000. Phorbol ester-induced generation of reactive oxygen species is protein kinase $C\beta$-dependent and required for SAPK activation. J Biol Chem 275, 41000-41003. https://doi.org/10.1074/jbc.M009322200
  11. Debidda M, Sanna B, Cossu A, Posadino AM, Tadolini B, Ventura C and Pintus G. 2003. NAMI-A inhibits the PMA-induced ODC gene expression in ECV304 cells: involvement of PKC/Raf/Mek/ERK signalling pathway. Int J Oncol 23, 477-482.
  12. Gourlay CW and Ayscough KR. 2005. The actin cytoskeleton: a key regulator of apoptosis and ageing?. Nat Rev Mol Cell Biol 6, 583-589. https://doi.org/10.1038/nrm1682
  13. Hauben EI, Arends J, Vandenbroucke JP, van Asperen CJ, Van Marck E and Hogendoorn PC. 2003. Multiple primary malignancies in osteosarcoma patients: incidence and predictive value of osteosarcoma subtype for cancer syndromes related with osteosarcoma. Eur J Hum Genet 11, 611-618. https://doi.org/10.1038/sj.ejhg.5201012
  14. Kahari VM and Saarialho-Kere U. 1999. Matrix metalloproteinases and their inhibitors in tumour growth and invasion. Ann Med 31, 34-45. https://doi.org/10.3109/07853899909019260
  15. Kaste SC, Pratt CB, Cain AM, Jones-Wallace DJ and Rao BN. 1999. Metastases detected at the time of diagnosis of primary pediatric extremity osteosarcoma at diagnosis: imaging features. Cancer 86, 1602-1608. https://doi.org/10.1002/(SICI)1097-0142(19991015)86:8<1602::AID-CNCR31>3.0.CO;2-R
  16. Kiguchi T, Niiya K, Shibakura M, Miyazono T, Shinagawa K, Ishimaru F, Kiura K, Ikeda K, Nakata Y and Harada M. 2001. Induction of urokinase-type plasminogen activator by the anthracycline antibiotic in human RC-K8 lymphoma and H69 lung-carcinoma cells. Int J Cancer 93, 792-297. https://doi.org/10.1002/ijc.1419
  17. Kim S, Choi MG, Lee HS, Lee SK, Kim SH, Kim WW, Hur SM, Kim JH, Choe JH, Nam SJ, Yang JH, Kim S, Lee JE and Kim JS. 2009. Silibinin suppresses TNF-$\alpha$-induced MMP-9 expression in gastric cancer cells through inhibition of the MAPK pathway. Molecules 14, 4300-4311. https://doi.org/10.3390/molecules14114300
  18. Kimura R, Ishikawa C, Rokkaku T, Janknecht R and Mori N. 2011. Phosphorylated c-Jun and Fra-1 induce matrix metalloproteinase-1 and thereby regulate invasion activity of 143B osteosarcoma cells. Biochim Biophys Acta 1813, 1543-1553. https://doi.org/10.1016/j.bbamcr.2011.04.008
  19. Klaunig JE, Xu Y, Isenberg JS, Bachowski S, Kolaja KL, Jiang J, Stevenson DE and Walborg EF Jr. 1998. The role of oxidative stress in chemical carcinogenesis. Environ Health Perspect 106 Suppl 1, 289-295. https://doi.org/10.1289/ehp.98106s1289
  20. Klein G, Vellenga E, Fraaije MW, Kamps WA and de Bont ES. 2004. The possible role of matrix metalloproteinase (MMP)-2 and MMP-9 in cancer, e.g. acute leukemia. Crit Rev Oncol Hematol 50, 87-100. https://doi.org/10.1016/j.critrevonc.2003.09.001
  21. Liotta LA and Kohn EC. 2001. The microenvironment of the tumour-host interface. Nature 411, 375-379. https://doi.org/10.1038/35077241
  22. Mehta P, Lawson D, Ward MB, Lee-Ambrose L and Kimura A. 1986. Effects of thromboxane A2 inhibition on osteogenic sarcoma cell-induced platelet aggregation. Cancer Res 46, 5061-5063.
  23. Miki H, Yamaguchi H, Suetsugu S and Takenawa T. 2000. IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. Nature 408, 732-735. https://doi.org/10.1038/35047107
  24. Mori K, Shibanuma M and Nose K. 2004. Invasive potential induced under long-term oxidative stress in mammary epithelial cells. Cancer Res 64, 7464-7472. https://doi.org/10.1158/0008-5472.CAN-04-1725
  25. Nelson AR, Fingleton B, Rothenberg ML and Matrisian LM. 2000. Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol 18, 1135-1149. https://doi.org/10.1200/JCO.2000.18.5.1135
  26. Nelson KK and Melendez JA. 2004. Mitochondrial redox control of matrix metalloproteinases. Free Radic Biol Med 37, 768-784. https://doi.org/10.1016/j.freeradbiomed.2004.06.008
  27. Nimnual AS, Taylor LJ and Bar-Sagi D. 2003. Redox-dependent downregulation of Rho by Rac. Nat Cell Biol 5, 236-241. https://doi.org/10.1038/ncb938
  28. Otani H. 2004. Reactive oxygen species as mediators of signal transduction in ischemic preconditioning. Antioxid Redox Signal 6, 449-469. https://doi.org/10.1089/152308604322899521
  29. Pancholi V and Fichetti VA. 1998. $\alpha$-Enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic Streptococci. J Biol Chem 273, 14503-14515. https://doi.org/10.1074/jbc.273.23.14503
  30. Poli G, Leonarduzzi G, Biasi F and Chiarpotto E. 2004. Oxidative stress and cell signalling. Curr Med Chem 11, 1163-1182. https://doi.org/10.2174/0929867043365323
  31. Radisky DC, Levy DD, Littlepage LE, Liu H, Nelson CM, Fata JE, Leake D, Godden EL, Albertson DG, Nieto MA, Werb Z and Bissell MJ. 2005. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436, 123-127. https://doi.org/10.1038/nature03688
  32. Ryu B, Qian ZJ and Kim SK. 2010. SHP-1, a novel peptide isolated from seahorse inhibits collagen release through the suppression of collagenases 1 and 3, nitirc oxide products regulated by NF-kB/p38 kinase. Peptides 31, 79-87. https://doi.org/10.1016/j.peptides.2009.10.019
  33. Thomas NV and Kim SK. 2010. Metalloproteinase inhibitors: status and scope from marine organisms. Biochem Res Int 2010, 845975.
  34. Thompson RC Jr, Cheng EY, Clohisy DR, Perentesis J, Manivel C and Le CT. 2002. Results of treatment for metastatic osteosarcoma with neoadjuvant chemotherapy and surgery. Clin Orthop Relat Res (397), 240-247.
  35. Tian L, Yin D, Ren Y, Gong C, Chen A and Guo FJ. 2012. Plumbagin induces apoptosis via the p53 pathway and generation of reactive oxygen species in human osteosarcoma cells. Mol Med Report 5, 126-132.
  36. Vanegas G, Quinones W, Carrasco-Lopez C, Concepcion JL, Albericio F and Avilan L. 2007. Enolase as a plasminogen binding protein in Leishmania mexicana. Parasitol Res 101, 1511-1516. https://doi.org/10.1007/s00436-007-0668-7
  37. Werner E and Werb Z. 2002. Integrins engage mitochondrial function for signal transduction by a mechanism dependent on Rho GTPases. J Cell Biol 158, 357-368. https://doi.org/10.1083/jcb.200111028
  38. Woo JH, Lim JH, Kim YH, Suh SI, Min DS, Chang JS, Lee YH, Park JW and Kwon TK. 2004. Resveratrol inhibits phorbol myristate acetate-induced matrix metalloproteinase-9 expression by inhibiting JNK and PKC $\delta$ signal transduction. Oncogene 23, 1845-1853. https://doi.org/10.1038/sj.onc.1207307
  39. Zhang P, Yang Y, Zweidler-McKay PA and Hughes DP. 2008. Critical role of notch signaling in osteosarcoma invasion and metastasis. Clin Cancer Res 14, 2962-2969. https://doi.org/10.1158/1078-0432.CCR-07-1992

Cited by

  1. Relative importance of ocean currents and fronts in population structures of marine fish: a lesson from the cryptic lineages of the Hippocampus mohnikei complex pp.1867-1624, 2017, https://doi.org/10.1007/s12526-017-0792-2