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An Anti-inflammatory Peptide Isolated from Seahorse 
Hippocampus kuda bleeler Inhibits the Invasive Potential of 
MG-63 Osteosarcoma Cells
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Abstract
Osteosarcoma is the most common primary malignancy of bone, and patients often develop pulmonary metastasis. The mecha-
nisms underlying osteosarcoma metastasis remain to be elucidated. Recently, anti-inflammatory agents were shown to be useful in 
the treatment of tumor progression. We previously isolated a natural anti-inflammatory peptide from the seahorse Hippocampus 
kuda bleeler. Here, we examined the antitumor metastatic activity of this peptide and investigated its mechanism. The peptide 
significantly inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced invasive migration of human osteosarcoma MG-63 
cells. Its inhibitory effect on invasive migration was associated with reduced expression of matrix metalloproteinases (MMP1 and 
MMP2). In addition, TPA stimulation increased intracellular reactive oxygen species (ROS) generation and small GTPase Rac1 
expression, whereas the peptide decreased ROS generation and Rac1 activation. Taken together, these results suggest that the pep-
tide inhibits invasive migration of MG-63 osteosarcoma cells by inhibiting MMP1 and MMP2 expression through downregulation 
of Rac1-ROS signaling. 
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Introduction

Osteosarcoma is the most common malignant bone cancer 
in children and adolescents (Thompson et al., 2002; Hauben 
et al., 2003). Over 80% of patients with osteosarcoma have 
metastatic or micrometastatic disease at diagnosis (Mehta et 
al., 1986; Kaste et al., 1999). For patients presenting with 
metastatic diseases or tumor recurrence, outcomes are far 
worse, with survival rates below 30% (Zhang et al., 2008). 
Current treatment for osteosarcoma includes chemotherapy 
and surgery. Unfortunately, major problems associated with 
chemotherapy persist, in particular, the cytotoxic effects of 
chemotherapy on normal tissues and organs. Thus, research 
has focused on the discovery of new agents and strategies to 
prevent the progression of osteosarcoma.    

Our knowledge of the mechanistic control of invasion and 

metastasis in osteosarcoma is limited. Tumor growth, inva-
sion, and metastasis require tumor cell proliferation, proteo-
lytic digestion of the extracellular matrix (ECM), cell migra-
tion through basement membranes into the circulatory system, 
and extravasation and growth at the metastatic sites (Liotta 
and Kohn, 2001). Matrix metalloproteinases (MMPs) have 
been known to contribute to this metastatic process by degrad-
ing basement membranes (Arii et al., 1996; Klein et al., 2004). 
MMPs and their endogenous inhibitors participate in the inva-
sive process of human osteosarcoma (Kähäri and Saarialho-
Kere, 1999; Kimura et al., 2011). MMPs can also promote tu-
mor growth by increasing the bioavailability of growth factors 
in the ECM (Chambers and Matrisian, 1997). Recent studies 
have also suggested that anti-inflammatory agents exert sub-
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Type Culture Collection (ATCC, Manassas, VA, USA) were 
routinely grown in Dulbecco’s modified Eagle’s medium 
(DMEM) supplemented with 10% heat-inactivated fetal bo-
vine serum (FBS; Gibco-BRL Life Technologies, Grand Is-
land, NY, USA), 100 U/mL penicillin, and 100 mg/mL strep-
tomycin in 5% CO2-containing air at 37°C. For experiments, 
cells were passaged at least three times and detached with 
Trypsin-EDTA. Matrigel was obtained from BD Biosciences 
(San Jose, CA, USA). Antibodies against MMP1, MMP2, 
Rac1, and actin were obtained from Santa Cruz Biotechnol-
ogy (Santa Cruz, CA, USA), BD Biosciences, Cell Signaling 
Technology (Beverly, MA, USA), and Sigma (St. Louis, MO, 
USA), respectively. Dichlorofluorescein diacetate (DCF-DA) 
was acquired from Molecular Probes (Eugene, OR, USA). 
Chemicals and reagents were purchased form Sigma, if not 
otherwise noted. 

Cell viability assay

MG-63 cells were seeded in 96-well plates at a density of 1 
× 103 cells/well in DMEM containing 10% FBS. Twenty-four 
hours after seeding, the medium was changed to serum-free 
DMEM, and the cells were incubated with various concentra-
tions (0-0.5 mg/mL) of peptide for 24 h. Thereafter, the medi-
um was carefully removed, and 100 µL of 3-(4,5-dimethylthi-
azol-2-yl)-2,5-diphenyltetrazolium bromide (MTT; 1 mg/mL 
final concentration) solution was added to each well prior to 
incubation for another 3 h at 37°C in 5% CO2. The absorbance 
was then measured in a microplate reader (iMark; Bio-Rad, 
Hercules, CA, USA) at 540 nm. 

Cell invasion assay

   For the cell invasion assay, the undersurface of the porous 
membranes in the Matrigel Invasion Chambers (BD Biosci-
ences) were coated with fibronectin (25 µg/mL) at room tem-
perature for 1 h and washed three times in DMEM. DMEM 
was added to the lower compartment of the chamber. Cells 
were cultured in DMEM without FBS overnight and treated 
with or without 12-O-tetradecanoylphorbol-13-acetate (TPA) 
(10 ng/mL) for 24 h in the presence or absence of 0.1 mg/mL 
peptide, trypsinized, and collected. Subsequently, 200 µL of 
each cell suspension (2 × 105 cells/well in DMEM) was added 
to the upper compartment of the chamber and incubated at 
37°C in a humidified atmosphere with 5% CO2 for 24 h. Cells 
on the upper surface of the membrane were removed, and cells 
that had migrated to the undersurface of the membrane were 
fixed with 3.7% formaldehyde in phosphate-buffered saline 
(PBS), stained with crystal violet (0.4% dissolved in 10% eth-
anol) for 15 min, washed twice with PBS, and counted under 
a phase-contrast microscope with a 10× objective lens. The 
numbers of cells in nine randomly selected fields from tripli-
cate chambers were counted in each experiment.

stantial protective effects on tumor promotion and metastasis 
by blocking the expression of MMPs (Kim et al., 2009). Thus, 
MMPs play a critical role in cancer and inflammation. In ad-
dition, among the molecules involved in inflammation, reac-
tive oxygen species (ROS), such as superoxide and hydrogen 
peroxide, likely play a role in linking inflammation to carcino-
genesis. ROS are well known as key inducers of MMPs and 
subsequent tumor progression (Mori et al., 2004; Nelson and 
Melendez, 2004). These findings suggest that downregulation 
of ROS signals may be an effective tool for the treatment of 
osteosarcoma. However, the importance of ROS signals on the 
metastatic property of osteosarcoma cells has not been stud-
ied. 

A natural peptide from the enzymatic hydrolysates of the 
seahorse Hippocampus kuda Bleeler was found to inhibit 
collagen release via its anti-inflammatory effect (Ryu et al., 
2010). The peptide suppressed nitric oxide production via 
downregulation of inducible nitric oxide synthase (iNOS), a 
well-known inflammatory factor. In the present study, we ex-
amined the effect of this peptide on the metastatic potential of 
MG-63 osteosarcoma cells. The peptide was found to suppress 
invasive migration of MG-63 osteosarcoma cells by inhibit-
ing the expression of MMPs via downregulation of Rac1-ROS 
signaling.

Materials and Methods

Preparation of the anti-inflammatory peptide

The anti-inflammatory seahorse peptide was prepared as 
reported by Ryu et al. (2010). To prepare the peptide from 
seahorse protein, enzymatic hydrolysis using several commer-
cial enzymes (alcalase, neutrase, papain, pepsin, pronase E, 
and trypsin) was performed. At an enzyme/substrate ratio of 
1/100 (w/w), the reaction mixture was incubated for 8 h with 
stirring and then heated in a boiling water bath (100°C) for 
10 min to inactivate the enzyme. Pronase E-derived seahorse 
hydrolysates exhibiting the greatest downregulation of colla-
gen release and iNOS were further purified by Hiprep 16/10 
DEAE FF anion-exchange chromatography (GE Healthcare, 
Piscataway, NJ, USA) and reverse-phase high-performance 
liquid chromatography using a Primesphere 10C18 (20 × 250 
mm) column. The purity of the peptide was over 99% accord-
ing to assessment by reverse phase-high performance liquid 
chromatography and N-terminal sequence analysis. The ami-
no acid sequence of the purified peptide was determined to 
be LEDPFDKDDWDNWK by electrospray ionization mass 
spectrometry spectroscopy.

Cell culture and reagents

MG-63 human osteosarcoma cells from the American 
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Cells treated with TPA and/or peptide for 24 h were washed 
with ice-cold PBS twice. Total RNA was extracted using a 
commercial kit (RNeasy Mini Kit; Qiagen, Valencia, CA, 
USA) according to the manufacturer’s instructions. cDNA 
synthesis was carried out using 3 µg of total RNA. The fol-
lowing primers were used to determine target gene levels. 
MMP1 (sense 5′-GGTCTCTGAGGGTCAAGCAG-3′ and 
antisense 5′-AGTTCATGAGCTGCAACACG-3′), MMP2 
(sense 5′-ATGACAGCTGCACCACTGAG-3′ and antisense 
5′-ATTTGTTGCCCAGGAAAGTG-3′), COX-2 (sense 
5′-TGAGCATCTACGGTTTGCTG-3′ and antisense 
5′-TGCTTGTCTGGAACAACTGC-3′), and GAPDH (sense 
5′-GAGTCAACGGATTTGGTCGT-3′ and antisense 
5′-TTGATTTTGGAGGGATCTCG-3′).

Results

An anti-inflammatory peptide from the seahorse 
does not affect the viability of MG-63 osteosar-
coma cells 

We first examined peptide cytotoxicity to human osteosar-
coma MG-63 cells and determined the proper peptide con-
centration showing anti-inflammatory effects in MG-63 cells. 
MG-63 cells were treated with 0-0.5 mg/mL peptide for 24 
h. Peptide treatment at these concentrations did not signifi-
cantly inhibit cell growth (Fig. 1A). In addition, Fig. 1B shows 
that cell stimulation with 10 ng/mL of the pro-inflammatory 
agent TPA induces increased expression of cyclooxygenase-2 
(COX-2), a key enzyme that stimulates prostaglandin produc-
tion, whereas 0.1 mg/mL peptide treatment effectively sup-
presses TPA-induced COX-2 expression. This inhibitory ef-
fect of peptide on TPA-induced COX-2 expression was not 

Measurement of ROS

DCF-DA was used to evaluate the generation of intracel-
lular ROS. Cells (3.3 × 104 cells/well) in 24-well plates were 
first incubated with TPA for 24 h in the presence or absence of 
peptide. The cells were then washed with PBS and incubated 
with 10 µM DCF-DA for 30 min at room temperature. Fluo-
rescence was measured using a fluorescence plate reader. 

Small GTPase Rac1 activity assay

GST-PAK-CRIB fusion protein was expressed as described 
previously (Miki et al., 2000) and immobilized on glutathione-
sepharose beads (Amersham Biosciences, Piscataway, NJ, 
USA). Cells were lysed in lysis buffer containing 50 mM Tris-
HCl (pH 7.5), 10 mM MgCl2, 1% NP-40, 10% glycerol, 200 
mM NaCl, 1 µg/mL aprotinin, 1 µg/mL leupeptin, 1 mM di-
thiothreitol (DTT), and 1 mM phenylmethanesulfonyl fluoride 
(PMSF). An aliquot of 5-10 µL of cell lysate was subjected to 
Western blotting. Then 1 mL of cell lysate was mixed with 50 
µL (bed volume) of GST-PAK CRIB beads and rotated at 4°C 
for 40 min. The beads were washed three times with cold wash 
buffer containing 25 mM Tris-HCl (pH 7.5), 30 mM MgCl2, 
40 mM NaCl, 1% NP-40, 1 mM DTT, 1 µg/mL aprotinin, 1 
µg/mL leupeptin, 1 mM PMSF, and 20 µL of sodium dodecyl 
sulfate (SDS) sample buffer containing 50 mM Tris-HCl (pH 
6.8), 2% SDS, 6% 2-mercaptoethanol, 10% glycerol, and 0.5 
mg/mL bromophenol blue. Samples were separated by SDS-
gel electrophoresis, and Rac1-GTP was detected by Western 
blotting.  

Reverse transcription-polymerization chain reac-
tion (RT-PCR)

A B

Fig. 1. Effect of anti-inflammatory peptide on the cell viability of MG-63 osteosarcoma cells. (A) MG-63 cells were treated with 0-0.5 mg/mL peptide for 
24 h under serum-starved conditions, and their viability was determined by MTT assay. The average of the results of 3 independent experiments was used. 
Phosphate buffered saline-treated cells were used as a control. (B) Cells were incubated with 12-O-tetradecanoylphorbol-13-acetate (TPA, 10 ng/mL) in the 
presence or absence of peptide (0.1 mg/mL) for 24 h. Equal amounts of cell lysates were examined for cyclooxygenase 2 (COX-2) expression. Representative 
images are shown. Results of 3 independent experiments were averaged. ∗P < 0.05 compared with control (- TPA - peptide). †P < 0.05 compared with  
TPA (+ TPA - peptide).
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levels in MG-63 cells in the presence or absence of TPA stim-
ulation. MG-63 cells were incubated with TPA for 24 h in the 
presence or absence of peptide. As shown in Fig. 3A, TPA 
treatment increased ROS levels to approximately 1.5-fold of 
those seen in the controls. Comparatively, peptide treatment 
successfully inhibited TPA-induced ROS generation in cells. 

The changes in invasive cell migration under oxidative 
stress also suggest the involvement of the small GTPase Rac1, 
which is an upstream regulator critical for actin reorganization 
and invasive cell migration. Rac1 is also an upstream enzyme 
in NADPH oxidase-dependent ROS generation (Bokoch and 
Knaus, 2003). Generation of ROS under a variety of physi-
ological conditions is associated with Rac1 activation (Werner 
and Werb, 2002; Nimnual et al., 2003). Therefore, we tested 
endogenous Rac1 activation in the presence or absence of TPA 
and peptide treatment via a GST-PAK binding assay using cell 
lysates. TPA treatment induced Rac1 activation, whereas pep-
tide treatment decreased TPA-induced Rac1 activation (Fig. 
3B). These data suggest that the TPA-induced Rac1-ROS 
cascade is involved in the invasive migration of these MG-63 
cells.

Peptide reduces TPA-induced expression of 
MMPs in MG-63 cells

MMPs are responsible for invasive cell migration via their 
ECM-degrading activity. The Rac1-ROS pathway induces the 
expression of MMPs in a variety of cell types (Nelson and 
Melendez, 2004; Radisky et al., 2005). Therefore, we exam-
ined whether TPA and peptide treatment affected the expres-
sion of MMPs. MG-63 cells were stimulated with TPA for 24 
h in the presence or absence of peptides, and then MMP ex-

significantly altered at increased peptide concentrations (data 
not shown). Thus, we performed all subsequent experiments 
using a peptide concentration of 0.1 mg/mL.

Peptide inhibits TPA-induced invasive migration 
of MG-63 osteosarcoma cells

Although many recent studies have shown that anti-in-
flammatory agents are capable of exerting antitumor activity 
in various tumor cells, their actual effects on the metastatic 
properties of osteosarcoma cells have not yet been described. 
Therefore, in this study, we investigated whether the anti-
inflammatory peptide influenced the metastatic phenotype of 
osteosarcoma cells, such as invasive migration. As shown in 
Fig. 2, TPA treatment increased the invasive migration of MG-
63 cells into Matrigel by approximately 7.5-fold compared to 
the controls, which were not treated with TPA. Treatment of 
MG-63 cells with 0.1 mg/mL peptide significantly inhibited 
TPA-induced cell invasion to approximately one-quarter of 
that of TPA treatment. Therefore, these results suggest that this 
peptide regulates an intracellular signaling cascade involved 
in the invasive migration of MG-63 cells.

Peptide decreases TPA-induced intracellular ROS 
generation and Rac1 activation in MG-63 cells

Much evidence indicates that ROS play a central role in 
tumor cell migration, invasion, and metastasis (Radisky et al., 
2005). ROS are also well known to link inflammation to tu-
mor promotion and metastasis. Thus, ROS generation might 
also be induced by TPA, which is also a well-known tumor 
promoter in MG-63 cells. We examined the intracellular ROS 

Fig. 2. Anti-inflammatory peptide from seahorse inhibits 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced invasive migration of MG-63 
osteosarcoma cells. Matrigel invasion assays were performed with MG-63 cells incubated with TPA (10 ng/mL) in the presence or absence of peptide (0.1 
mg/mL) for 24 h. Representative images are shown. The average of the results of 3 independent experiments was used. Phosphate buffered saline-treated 
cells were used as a control. ∗P < 0.05 compared with control (- TPA - peptide). †P < 0.05 compared with TPA (+ TPA - peptide). Scale bar = 100 µm.
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Discussion

Osteosarcoma is an aggressive malignant bone disorder 
with a high potential to invade and metastasize. In the present 
study, we examined the effects of an anti-inflammatory and 
anti-oxidative agent on the metastatic invasive potential of 
MG-63 osteosarcoma cells. TPA stimulation increases the in-
vasive migration of MG-63 cells, which correlates with Rac1 
activation and increased intracellular ROS levels as well as 
increased MMP1 and MMP2 expression. In contrast, an anti-

pression was examined by mRNA quantification via RT-PCR. 
As shown in Fig. 4, TPA stimulation increased the expression 
levels of MMP1 and MMP2 mRNA in MG-63 cells, while 
peptide treatment inhibited the TPA-induced expression of 
these MMPs. In particular, MMP1 mRNA levels increased 
over 6.2-fold after TPA treatment and were significantly in-
hibited by peptide treatment. These findings suggest that the 
peptide suppresses invasive migration of MG-63 cells by in-
hibiting MMP expression through downregulating intracellu-
lar Rac1-ROS signaling.

Fig. 4. Anti-inflammatory peptide attenuates mRNA expression of matrix metalloproteinase (MMP) 1 and MMP2. MG-63 cells were incubated with 
12-O-tetradecanoylphorbol-13-acetate (TPA, 10 ng/mL) in the presence or absence of peptide (0.1 mg/mL) for 24 h. Expression of MMP1 and MMP2 was 
determined by real-time PCR. The average of the results of 3 independent experiments was used. ∗P < 0.05 compared with control (- TPA - peptide). †P < 0.05 
compared with TPA (+ TPA - peptide). PCR products after 35 cycle PCR reaction were also analyzed in 1% agarose gel. 

Fig. 3. Anti-inflammatory peptide attenuates 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced intracellular reactive oxygen species (ROS) 
generation and Rac1 activity. (A) Cells were incubated with TPA (10 ng/mL) in the presence or absence of peptide (0.1 mg/mL) for 24 h. Cellular ROS levels 
were assessed by dichlorogluorescein diacetate. All data are mean ± SD values. ∗P < 0.05 compared with control (- TPA - peptide). †P < 0.05 compared with 
TPA (+ TPA - peptide). (B) MG-63 cells were incubated with TPA (10 ng/mL) in the presence or absence of peptide (0.1 mg/mL) for 24 h. The purified GST-PAK-
PBD fusion protein was incubated with MG-63 cells lysates. The bound proteins were collected, and the GTP-bound Rac1 was detected via western blotting 
with anti-Rac1 antibody. The figure is representative of the results of 3 independent experiments. The average of the results of 3 independent experiments 
was used. Phosphate buffered saline-treated cells were used as a control. ∗P < 0.05 compared with control (- TPA - peptide). †P < 0.05 compared with  
TPA (+ TPA - peptide).

A
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ports, we have shown that activated Rac1-ROS signaling in 
response to TPA stimulation successfully increases MMP ex-
pression and results in invasive migration of osteosarcoma 
MG-63 cells. This is the first report to show a possible mecha-
nism of the antitumor effect of an anti-oxidative agent against 
the metastatic property of osteosarcoma cells.

   We also found that treatment of MG-63 cells with Go6983, 
a selective protein kinase C (PKC) inhibitor, reduces expres-
sion of MMP1 and invasive migration of MG-63 cells (data 
not shown). The cellular receptor of TPA, relevant to tumor 
progression and metastasis, was found to be PKC (Debidda et 
al., 2003; Woo et al., 2004). ROS can be generated by TPA in 
a PKC-dependent manner (Datta et al., 2000). Therefore, the 
TPA/PKC-mediated signaling cascade likely cross talks with 
the MMP pathway to mediate TPA-induced invasive migra-
tion of MG-63 cells via ROS generation. In addition, when 
we compared the seahorse peptide sequences with known se-
quences in the translated GenBank database, the peptide se-
quence was found to have a high identity (>90%) with the 
corresponding regions of α-enolase from various sources. 
α-Enolase is a surface receptor for plasminogen. α-Enolase-
bound plasminogen promotes tumor cell invasion and cancer 
metastasis through conversion to plasmin and consequent 
ECM degradation (Pancholi and Fichetti, 1998; Vanegas et al., 
2007). ROS-generating agents have been proposed to upregu-
late plasminogen activator (Kiguchi et al., 2001). Plasmin also 
induces matrix degradation via activation of MMPs. There-
fore, some other invasion-related genes, such as α-enolase 
and plasminogen, may also be coupled with the TPA-induced 
Rac1-ROS cascade to regulate MMP expression and mediate 
invasive migration of MG-63 cells. Additionally, the seahorse 
peptide is an aspartic acid-rich oligopeptide. Acidic residues 
are able to form ionic bonds with target molecules and also 
function as hydrogen bond acceptors. Many proteins that bind 
metal ions for structural or functional purposes possess aspar-
tate or glutamate side chains as metal-binding sites. Therefore, 
identification of the direct binding targets of the peptide in 
MG-63 cells may help to precisely understand how the peptide 
exerts its antitumor effect in MG-63 cells and is an important 
subject for further research.
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