DOI QR코드

DOI QR Code

Improved Antireflection Property of Si by Au Nanoparticle-Assisted Electrochemical Etching

금 나노입자 촉매를 이용한 단결정 실리콘의 전기화학적 식각을 통한 무반사 특성 개선

  • Ko, Yeong-Hwan (Department of Electronics and Radio Engineering, Kyung Hee University) ;
  • Joo, Dong-Hyuk (Department of Electronics and Radio Engineering, Kyung Hee University) ;
  • Yu, Jae-Su (Department of Electronics and Radio Engineering, Kyung Hee University)
  • 고영환 (경희대학교 전자전파공학과) ;
  • 주동혁 (경희대학교 전자전파공학과) ;
  • 유재수 (경희대학교 전자전파공학과)
  • Received : 2011.11.14
  • Accepted : 2012.03.13
  • Published : 2012.03.30

Abstract

We fabricated the textured silicon (Si) surface on Si substrates by the electrochemical etching using gold (Au) nanoparticle catalysts. The antireflective property of the fabricated Si nanostructures was improved. The Au nanoparticles of ~20-150 nm were formed by the rapid thermal annealing using thermally evaporated Au films on Si. In the chemical etching, the aqueous solution containing $H_2O_2$ and HF was used. In order to investigate the effect of electrochemical etching on the etching depth and reflectance characteristics, the sample was immersed in the aqueous etching solution for 1 min with and without applied cathodic voltages of -1 V and -2 V. As a result, the solar weighted reflectance, i.e., the averaged reflectance with considering solar spectrum (air mass 1.5), could be efficiently reduced for the electrochemically etched Si by applying the cathodic voltage of -2 V, which is expected to be useful for Si solar cell applications.

금 나노입자 촉매를 이용한 전기화학적 식각법에 의해 실리콘 표면에 짧은 시간의 효과적인 텍스쳐링을 통한 나노구조를 제작하여 무반사 특성을 조사하였다. 실험을 위해, 열증발증착법과 급속열처리법을 이용하여 단결정 실리콘 표면에 20 nm에서 150 nm 크기의 금 나노입자를 형성하였고, 습식식각을 위해 금 나노입자가 코팅된 실리콘을 과산화수소와 불화수소가 포함된 식각용액에 1분 동안 담가두었다. 전기화학적 습식식각을 확인하기위해, 금 나노입자가 코팅된 실리콘을 음극으로 각각 -1 V와 -2 V의 전압을 인가하여 식각깊이와 반사율 스펙트럼을 비교하였다. 태양광 스펙트럼(air mass 1.5)을 고려하여 태양가중치 반사율을 계산한 결과, 전압을 인가하지 않고 식각된 실리콘 표면의 반사율이 25.8%인 반면, -2 V의 전압을 인가하여 8.2%로 반사율을 크게 줄일 수 있었다.

Keywords

References

  1. T. J. Gim, B. J. Lee, and P. K. Shin, J. Korean Vacuum Soc. 19, 341 (2010). https://doi.org/10.5757/JKVS.2010.19.5.341
  2. M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, Opt. Express 16, 5290 (2008). https://doi.org/10.1364/OE.16.005290
  3. W. Smigaj, B. Gralak, R. Pierre, and G. Tayeb, Opt. Lett. 34, 3532 (2009). https://doi.org/10.1364/OL.34.003532
  4. E. B. Grann, M. G. Moharam, and D. A. Pommet, J. Opt. Soc. Am. A 12, 333 (1995). https://doi.org/10.1364/JOSAA.12.000333
  5. H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, Prog. Photovolt. Res. Appl. 15, 415 (2007). https://doi.org/10.1002/pip.754
  6. Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, Small 6, 984 (2010). https://doi.org/10.1002/smll.201000079
  7. D. Qi, N. Lu, H. Xu, B. Yang, C. Huang, M. Xu, L. Gao, Z. Wang, and L. Chi, Langmuir 25, 7769 (2009). https://doi.org/10.1021/la9013009
  8. T. Oh, J. Korean Vacuum Soc. 20, 189 (2011). https://doi.org/10.5757/JKVS.2011.20.3.189
  9. S. Yae, T. Kobayashi, T. Kawagishi, N. Fukumuro, and H. Matsuda, Sol. Energy 80, 701 (2006). https://doi.org/10.1016/j.solener.2005.10.011
  10. S. Yae, Y. Kawamoto, H. Tanaka, N. Fukumuro, and H. Matsuda, Electrochem. Comm. 5, 632 (2003). https://doi.org/10.1016/S1388-2481(03)00146-2
  11. Z. Huang, N. Geyer, P. Werner, J. de Boor, and U. Gösele, Adv. Mater. 23, 285 (2011). https://doi.org/10.1002/adma.201001784
  12. H. S. Jang, H. J. Choi, B. Y. Oh, and J. H. Kim, Electrochem. Solid-State Lett. 14, D5 (2011). https://doi.org/10.1149/1.3504127
  13. Y. H. Ko and J. S. Yu, Phys. Status Solidi A 208, 2778 (2011). https://doi.org/10.1002/pssa.201127379
  14. N. Megouda, T. Hadjersi, G. Piret, R. Boukherroub, and O. Elkechai, Appl. Surf. Sci. 255, 6210 (2009). https://doi.org/10.1016/j.apsusc.2009.01.075
  15. M. L. Zhang, K. Q. Peng, X. Fan, J. S. Jie, R. Q. Zhang, S. T. Lee, and N. B. Wong, J. Phys. Chem. C 112, 4444 (2008). https://doi.org/10.1021/jp077053o
  16. J. Kim, J. Korean Phys. Soc. 50, 1168 (2007). https://doi.org/10.3938/jkps.50.1168
  17. M. J. Huang, C. R. Yang, Y. C. Chiou, and R. T. Lee, Sol. Energy Mater. Sol. Cells 92, 1352 (2008). https://doi.org/10.1016/j.solmat.2008.05.014
  18. R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo, and D. Knipp, Opt. Express 17, 23058 (2009). https://doi.org/10.1364/OE.17.023058

Cited by

  1. Reduction of Light Reflectance from InAlP by the Texture Formation Using Ultra-Thin Pt Layer vol.22, pp.3, 2013, https://doi.org/10.5757/JKVS.2013.22.3.150
  2. Influence of Carrier Trap in InAs/GaAs Quantum-Dot Solar Cells vol.22, pp.1, 2013, https://doi.org/10.5757/JKVS.2013.22.1.37
  3. Properties of Indium Tin Oxide Thin Films According to Oxygen Flow Rates by γ-FIB System vol.21, pp.6, 2012, https://doi.org/10.5757/JKVS.2012.21.6.333